1,038
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Green synthesis of zinc oxide nanoparticles using Bacillus subtilis ZBP4 and their antibacterial potential against foodborne pathogens

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Di Guglielmo, C.; López, D.; De Lapuente, J.; Mallafre, J.; Suàrez, M. Embryotoxicity of Cobalt Ferrite and Gold Nanoparticles: A First in Vitro Approach. Reprod. Toxicol. 2010, 30, 271–276.
  • Agarwal, H.; Kumar, S.; Rajeshkumar, S. A Review on Green Synthesis of Zinc Oxide Nanoparticles-An Eco-Friendly Approach. Resour. Effic. Technol. 2017, 3, 406–413.
  • Siddiqi, K. S.; Ur Rahman, A.; Husen, A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res. Lett. 2018, 13, 141.
  • Mirzaei, H.; Darroudi, M. Zinc Oxide Nanoparticles: Biological Synthesis and Biomedical Applications. Ceram. Int 2017, 43, 907–914.
  • Mishra, P.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc Oxide Nanoparticles: A Promising Nanomaterial for Biomedical Applications. Drug Discov Today. 2017, 22, 1825–1834.
  • Ebadi, M.; Zolfaghari, M.; Aghaei, S.; Zargar, M.; Shafiei, M.; Zahiri, H.; Noghabi, K. A Bio-Inspired Strategy for the Synthesis of Zinc Oxide Nanoparticles (ZnO NPs) Using the Cell Extract of Cyanobacterium Nostoc sp. EA03: From Biological Function to Toxicity Evaluation. RSC Adv. 2019, 9, 23508–23525.
  • Mohammed, Y.; Holmes, A.; Haridass, I.; Sanchez, W.; Studier, H.; Grice, J.; Benson, H. A. E.; Roberts, M. S. Support for the Safe Use of Zinc Oxide Nanoparticle Sunscreens: Lack of Skin Penetration or Cellular Toxicity after Repeated Application in Volunteers. J. Invest. Dermatol. 2019, 139, 308–315.
  • Ali, J.; Irshad, R.; Li, B.; Tahir, K.; Ahmad, A.; Shakeel, M.; Khan, N. U.; Khan, Z. U. H. Synthesis and Characterization of Phytochemical Fabricated Zinc Oxide Nanoparticles with Enhanced Antibacterial and Catalytic Applications. J. Photochem. Photobiol. B. 2018, 183, 349–356.
  • Gurunathan, S.; Kalishwaralal, K.; Vaidyanathan, R.; Venkataraman, D.; Pandian, S.; Muniyandi, J.; Hariharan, N.; Eom, S. Biosynthesis, Purification and Characterization of Silver Nanoparticles Using Escherichia Coli. Colloids Surf. B Biointerfaces. 2009, 74, 328–335.
  • Iqtedar, M.; Riaz, H.; Kaleem, A.; Abdullah, R.; Aihetasham, A.; Naz, S.; Sharif, S, Lahore College for Women University Lahore. Biosynthesis, Optimization and Characterization of ZnO Nanoparticles Using Bacillus Cereus MN181367 and Their Antimicrobial Activity against Multidrug Resistant Bacteria. RMIQ. 2020, 19, 253–266.
  • Azizi, S.; Ahmad, M.; Namvar, F.; Mohamad, R. Green Biosynthesis and Characterization of Zinc Oxide Nanoparticles Using Brown Marine Macroalga Sargassum Muticum Aqueous Extract. Mater. Lett. 2014, 116, 275–277.
  • Busi, S.; Rajkumari, J.; Pattnaik, S.; Parasuraman, P.; Hnamte, S. Extracellular Synthesis of Zinc Oxide Nanoparticles Using Acinetobacter Schindleri SIZ7 and Its Antimicrobial Property against Foodborne Pathogens. JMBFS 2016, 05, 407–411.
  • Mahdi, Z.; Roshan, F. T.; Nikzad, M.; Ezoji, H. Biosynthesis of Zinc Oxide Nanoparticles Using Bacteria: A Study on the Characterization and Application for Electrochemical Determination of Bisphenol A. Inorg. Nano-Met. Chem. 2021, 51, 1249–1257.
  • El-Ghwas, D. E. Characterization and Biological Synthesis of Zinc Oxide Nanoparticles by New Strain of Bacillus Foraminis. Biodiversitas. 2022, 23, 548–553.
  • Al-Kordy, H.; Sabry, S.; Mabrouk, M. Statistical Optimization of Experimental Parameters for Extracellular Synthesis of Zinc Oxide Nanoparticles by a Novel Haloalkaliphilic Alkalibacillus sp. W7. Sci. Rep. 2021, 11, 1–14.
  • Schallmey, M.; Singh, A.; Ward, O. P. Developments in the Use of Bacillus Species for Industrial Production. Can. J. Microbiol. 2004, 50, 1–17.
  • Yurtluk, T.; Akçay, F. A.; Avcı, A. Biosynthesis of Silver Nanoparticles Using Novel Bacillus sp. SBT8. Prep. Biochem. Biotechnol. 2018, 48, 151–159.
  • Motazedi, R.; Rahaiee, S.; Zare, M. Efficient Biogenesis of ZnO Nanoparticles Using Extracellular Extract of Saccharomyces Cerevisiae: Evaluation of Photocatalytic, Cytotoxic and Other Biological Activities. Bioorg. Chem. 2020, 101, 103998.
  • Hernández-Sierra, J. F.; Ruiz, F.; Pena, D. C. C.; Martínez-Gutiérrez, F.; Martínez, A. E.; Guillén, A. J. P.; Perez, H. T.; Castañón, G. M. The Antimicrobial Sensitivity of Streptococcus Mutans to Nanoparticles of Silver, Zinc Oxide, and Gold. Nanomedicine. 2008, 4, 237–240.
  • Kim, S. H.; Lee, H. S.; Ryu, D. S.; Choi, S. J.; Lee, D. S. Antibacterial Activity of Silver Nanoparticles Against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. Lett. 2011, 39, 77–85.
  • Baptista, P.; McCusker, M.; Carvalho, A.; Ferreira, D.; Mohan, N.; Martins, M.; Fernandes, A. Nano-Strategies to Fight Multidrug Resistant Bacteria-“a Battle of the Titans. Front. Microbiol. 2018, 9, 1441.
  • Espitia, P. J. P.; Soares, N. F.; Coimbra, J.; de Andrade, N. J.; Cruz, R. S.; Medeiros, E. A. A. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess. Technol. 2012, 5, 1447–1464.
  • Dimapilis, E. A. S.; Hsu, C. S.; Mendoza, R. M. O.; Lu, M. C. Zinc Oxide Nanoparticles for Water Disinfection. Sustain. Environ. Res. 2018, 28, 47–56.
  • Avcı, A.; Çağrı-Mehmetoğlu, A.; Arslan, D. Production of Antimicrobial Substances by a Novel Bacillus Strain Inhibiting Salmonella Typhimurium. LWT-Food Sci. Technol/ 2017, 80, 265–270.
  • Schneider, C.; Rasband, W.; Eliceiri, K. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods. 2012, 9, 671–675.
  • Naik, E. I.; Naik, H. B.; Swamy, B. K.; Viswanath, R.; Gowda, I. S.; Prabhakara, M. C.; Chetankumar, K. Influence of Cu Doping on ZnO Nanoparticles for Improved Structural, Optical, Electrochemical Properties and Their Applications in Efficient Detection of Latent Fingerprints. Chem. Data Collect. 2021, 33, 100671.
  • Marín, R. R.; Babick, F.; Hillemann, L. Zeta Potential Measurements for Non-Spherical Colloidal Particles – Practical Issues of Characterisation of Interfacial Properties of Nanoparticles. Colloids Surf. A: Physicochem. Eng. Asp. 2017, 532, 516–521.
  • Bauer, A. Antibiotic Susceptibility Testing by a Standardized Single Disc Method. Am. J. Clin. Pathol. 1966, 45, 149–158.
  • Jain, D.; Shivani; Bhojiya, A. A.; Singh, H.; Daima, H. K.; Singh, M.; Mohanty, S. R.; Stephen, B. J.; Singh, A. Microbial Fabrication of Zinc Oxide Nanoparticles and Evaluation of Their Antimicrobial and Photocatalytic Properties. Front. Chem. 2020, 8, 778.
  • Rehman, S.; Jermy, B. R.; Akhtar, S.; Borgio, J. F.; Abdul Azeez, S.; Ravinayagam, V.; Al Jindan, R.; Alsalem, Z. H.; Buhameid, A.; Gani, A. Isolation and Characterization of a Novel Thermophile; Bacillus haynesii, Applied for the Green Synthesis of ZnO Nanoparticles. Artif. Cells. Nanomed. Biotechnol. 2019, 47, 2072–2082.
  • Selvarajan, E.; Mohanasrinivasan, V. Biosynthesis and Characterization of ZnO Nanoparticles Using Lactobacillus plantarum VITES07. Mater. Lett. 2013, 112, 180–182.
  • Hanumith, S.; Mahalakshmi, V.; Abirami, S. Biosynthesis of Zinc Oxide Nanoparticles Using Bacillus Species Potentiates Anticancer and Antimicrobial Activity. Int. J. Trend Res. Dev. 2018, 2, 2456–6470.
  • Sabir, S.; Zahoor, M.; Waseem, M.; Siddique, M.; Shafique, M.; Imran, M.; Hayat, S.; Malik, I. R.; Muzammil, S. Biosynthesis of ZnO Nanoparticles Using Bacillus subtilis: Characterization and Nutritive Significance for Promoting Plant Growth in Zea Mays L. Dose Response. 2020, 18, 155932582095891–155932582095899.
  • Shamim, A.; Abid, M.; Mahmood, T. Biogenic Synthesis of Zinc Oxide (ZnO) Nanoparticles Using a Fungus (Aspargillus niger) and Their Characterization. IJC 2019, 11, 119–126.
  • Srikanth, C. K.; Jeevanandam, P. Effect of Anion on the Homogeneous Precipitation of Precursors and Their Thermal Decomposition to Zinc Oxide. J. Alloys Compd. 2009, 486, 677–684.
  • Ahmad, N.; Ang, B.; Amalina, M.; Bong, C. Influence of Precursor Concentration and Temperature on the Formation of Nanosilver in Chemical Reduction Method. Sains Malays. 2018, 47, 157–168.
  • Makuła, P.; Pacia, M.; Macyk, W. How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. 2018, 9, 6814–6817.
  • Ekennia, A. C.; Uduagwu, D. N.; Nwaji, N. N.; Oje, O. O.; Emma-Uba, C. O.; Mgbii, S. I.; Olowo, O. J.; Nwanji, O. L. Green Synthesis of Biogenic Zinc Oxide Nanoflower as Dual Agent for Photodegradation of an Organic Dye and Tyrosinase Inhibitor. J. Inorg. Organomet. Polym. 2021, 31, 886–897.
  • Bhuyan, T.; Mishra, K.; Khanuja, M.; Prasad, R.; Varma, A. Biosynthesis of Zinc Oxide Nanoparticles from Azadirachta Indica for Antibacterial and Photocatalytic Applications. Mater. Sci. Semicond. Process. 2015, 32, 55–61.
  • Khan, G.; Khan, R. Ergonomic Synthesis Suitable for Industrial Production of Silver-Festooned Zinc Oxide Nanorods. Int. J. Nanosci. 2015, 14, 1550018.
  • Chithra, M.; Sathya, M.; Pushpanathan, K. Effect of pH on Crystal Size and Photoluminescence Property of ZnO Nanoparticles Prepared by Chemical Precipitation Method. Acta Metall. Sin. Lett. 2015, 28, 394–404.
  • Sangeetha, G.; Rajeshwari, S.; Venckatesh, R. Green Synthesis of Zinc Oxide Nanoparticles by Aloe Barbadensis Miller Leaf Extract: Structure and Optical Properties. Mater. Res. Bull. 2011, 46, 2560–2566.
  • Zheng, M.; Wang, S.; Liu, Z.; Xie, L.; Deng, Y. Development of Temozolomide Coated Nano Zinc Oxide for Reversing the Resistance of Malignant Glioma Stem Cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 83, 44–50.
  • Ahmed, T.; Wu, Z.; Jiang, H.; Luo, J.; Noman, M.; Shahid, M.; Manzoor, I.; Allemailem, K. S.; Alrumaihi, F.; Li, B. Bioinspired Green Synthesis of Zinc Oxide Nanoparticles from a Native Bacillus Cereus Strain RNT6: Characterization and Antibacterial Activity against Rice Panicle Blight Pathogens Burkholderia Glumae and B. gladioli. Nanomaterials. 2021, 11, 884.
  • Prakash, A.; Sharma, S.; Ahmad, N.; Ghosh, A.; Sinha, P. Bacteria Mediated Extracellular Synthesis of Metallic Nanoparticles. Int. Res. J. Biotechnol. 2010, 1, 71–79.
  • Muhammad, W.; Ullah, N.; Haroon, M.; Abbasi, B. Optical, Morphological and Biological Analysis of Zinc Oxide Nanoparticles (ZnO NPs) Using Papaver Somniferum L. RSC Adv. 2019, 9, 29541–29548.
  • El-Belely, E.; Farag, M.; Said, H.; Amin, A.; Azab, E.; Gobouri, A.; Fouda, A. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira Platensis (Class: Cyanophyceae) and Evaluation of Their Biomedical Activities. Nanomaterials. 2021, 11, 95.
  • Salam, H. A.; Sivaraj, R.; Venckatesh, R. Green Synthesis and Characterization of Zinc Oxide Nanoparticles from Ocimum Basilicum L. var. purpurascens Benth.-Lamiaceae Leaf Extract. Mater. Lett. 2014, 131, 16–18.
  • Yedurkar, S.; Maurya, C.; Mahanwar, P. Biosynthesis of Zinc Oxide Nanoparticles Using Ixora Coccinea Leaf Extract—A Green Approach. OJSTA. 2016, 05, 1–14.
  • Anzabi, Y. Biosynthesis of ZnO Nanoparticles Using Barberry (Berberis Vulgaris) Extract and Assessment of Their Physico-Chemical Properties and Antibacterial Activities. Green Process. Synth. 2018, 7, 114–121.
  • Liu, Z.; Chen, F.; Lu, Z. Biofabrication of Zinc Oxide Nanoparticles, Characterization and Cytotoxicity against Pediatric Leukemia Cell Lines. Green Process. Synth/ 2019, 9, 56–62.
  • Balraj, B.; Senthilkumar, N.; Siva, C.; Krithikadevi, R.; Julie, A.; Potheher, I. V.; Arulmozhi, M. Synthesis and Characterization of Zinc Oxide Nanoparticles Using Marine Streptomyces sp. with Its Investigations on Anticancer and Antibacterial Activity. Res Chem Intermed 2017, 43, 2367–2376.
  • Batool, M.; Khurshid, S.; Qureshi, Z.; Daoush, W. Adsorption, Antimicrobial and Wound Healing Activities of Biosynthesised Zinc Oxide Nanoparticles. Chem. Pap. 2021, 75, 893–907.
  • Akintelu, S.; Folorunso, A. A Review on Green Synthesis of Zinc Oxide Nanoparticles Using Plant Extracts and Its Biomedical Applications. BioNanoSci. 2020, 10, 848–863.
  • Kadhim, A. A.; Salman, J. A. S.; Haider, A. J.; Ibraheem, S. A.; Kadhim, H. A. Procedings – International Conference of Development of eSystems Engineering (DeSE); IEEE: Kazan, Russia, 2019; pp. 755–760.
  • Fouda, A.; Saad, E. L.; Salem, S. S.; Shaheen, T. I. In-Vitro Cytotoxicity, Antibacterial, and UV Protection Properties of the Biosynthesized Zinc Oxide Nanoparticles for Medical Textile Applications. Microb. Pathog. 2018, 125, 252–261.
  • AlSalhi, M. S.; Devanesan, S.; Atif, M.; AlQahtani, W. S.; Nicoletti, M.; Del Serrone, P. Therapeutic Potential Assessment of Green Synthesized Zinc Oxide Nanoparticles Derived from Fennel Seeds Extract. Int. J. Nanomedicine. 2020, 15, 8045–8057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.