274
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Antibiofilm and cytotoxic potential of extracellular biosynthesized gold nanoparticles using actinobacteria Amycolatopsis sp. KMN

ORCID Icon, ORCID Icon, , &

References

  • Dykman, L.; Bogatyrev, V. A., Shchegolev, S. Yu., and Khlebtsov, N. G. Zolotye Nanochastitsy: Sintez, Svoistva, Biomeditsinskoe Primenenie [Gold Nanoparticles: Synthesis, Properties, and Biomedical Applications]; Nauka, Moscow, 2008.
  • Rai, M.; Yadav, A.; Gade, A. Silver Nanoparticles as a New Generation of Antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. DOI: 10.1016/j.biotechadv.2008.09.002.
  • Patra, C. R.; Bhattacharya, R.; Mukhopadhyay, D.; Mukherjee, P. Fabrication of Gold Nanoparticles for Targeted Therapy in Pancreatic Cancer. Adv. Drug Deliv. Rev. 2010, 62, 346–361. DOI: 10.1016/j.addr.2009.11.007.
  • Pissuwan, D.; Niidome, T.; Cortie, M. B. The Forthcoming Applications of Gold Nanoparticles in Drug and Gene Delivery Systems. J. Control Release 2011, 149, 65–71. DOI: 10.1016/j.jconrel.2009.12.006.
  • Lazarides, A. A.; Lance Kelly, K.; Jensen, T. R.; Schatz, G. C. Optical Properties of Metal Nanoparticles and Nanoparticle Aggregates Important in Biosensors. J. Mol. Struct. Theochem. 2000, 529, 59–63. DOI: 10.1016/S0166-1280(00)00532-7.
  • Köhler, J. M.; Csáki, A.; Reichert, J.; Möller, R.; Straube, W.; Fritzsche, W. Selective Labeling of Oligonucleotide Monolayers by Metallic Nanobeads for Fast Optical Readout of DNA-Chips. Sens. Actuators B 2001, 76, 166–172.
  • Gardea-Torresdey, J. L.; Tiemann, K. J.; Gamez, G.; Dokken, K.; Tehuacanero, S.; José-Yacamán, M. Gold Nanoparticles Obtained by Bio-Precipitation from Gold (III) Solutions. J. Nanoparticle Res. 1999, 1, 397–404. DOI: 10.1023/A:1010008915465.
  • Choi, Y.-J.; Chiu, C.-K.; Luo, T.-J. M. Spontaneous Deposition of Gold Nanoparticle Nanocomposite on Polymer Surfaces through Sol-Gel Chemistry. Nanotechnology 2011, 22, 045601. DOI: 10.1088/0957-4484/22/4/045601.
  • Begum, N. Mondal Colloids and Surface B. Biointerfaces 2009, 71, 13–118.
  • Das, S. K.; Liang, J.; Schmidt, M.; Laffir, F.; Marsili, E. Biomineralization Mechanism of Gold by Zygomycete Fungi Rhizopus oryzae. ACS Nano. 2012, 6, 6165–6173. DOI: 10.1021/nn301502s.
  • Kumar, K. M.; Mandal, B. K.; Sinha, M.; Krishnakumar, V. Terminalia Chebula Mediated Green and Rapid Synthesis of Gold Nanoparticles. Spectrochim. Acta A. 2012, 86, 490–494.
  • Mohanpuria, P.; Rana, N. K.; Yadav, S. K. Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. J. Nanopart. Res. 2008, 10, 507–517. DOI: 10.1007/s11051-007-9275-x.
  • Schaechter, M. Encyclopedia of Microbiology; Academic Press: San Diego, CA, 2009.
  • Fariq, A.; Khan, T.; Yasmin, A. Microbial Synthesis of Nanoparticles and Their Potential Applications in Biomedicine. J. Appl. Biomed. 2017, 15, 241–248. DOI: 10.1016/j.jab.2017.03.004.
  • Golinska, P.; Wypij, M.; Ingle, A. P.; Gupta, I.; Dahm, H.; Rai, M. Biogenic Synthesis of Metal Nanoparticles from Actinomycetes: biomedical Applications and Cytotoxicity. Appl. Microbiol. Biotechnol. 2014, 98, 8083–8097. DOI: 10.1007/s00253-014-5953-7.
  • Manivasagan, P.; Venkatesan, J.; Sivakumar, K.; Kim, S.-K. Actinobacteria Mediated Synthesis of Nanoparticles and Their Biological Properties: A Review. Crit. Rev. Microbiol. 2016, 42, 209–221.
  • Ramya, S.; Shanmugasundaram, T.; Balagurunathan, R. Biomedical Potential of Actinobacterially Synthesized Selenium Nanoparticles with Special Reference to Anti-Biofilm, Anti-Oxidant, Wound Healing, Cytotoxic and Anti-Viral Activities. J. Trace Elements Med. Biol. 2015, 32, 30–39. DOI: 10.1016/j.jtemb.2015.05.005.
  • Sanger, F.; Nicklen, S.; Coulson, A. R. DNA Sequencing with Chain-Terminating Inhibitors. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 5463–5467. DOI: 10.1073/pnas.74.12.5463.
  • Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425.
  • Kimura, M. A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences. J. Mol. Evol. 1980, 16, 111–120. DOI: 10.1007/BF01731581.
  • Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. DOI: 10.1093/molbev/msy096.
  • Gopal, J. V.; Thenmozhi, M.; Kannabiran, K.; Rajakumar, G.; Velayutham, K.; Rahuman, A. A. Actinobacteria Mediated Synthesis of Gold Nanoparticles Using Streptomyces sp. VITDDK3 and Its Antifungal Activity. Mater. Lett. 2013, 93, 360–362.
  • Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R.; Sastry, M. Extra-/Intracellular Biosynthesis of Gold Nanoparticles by an Alkalotolerant Fungus, Trichothecium sp. J. Biomed. Nanotechnol. 2005, 1, 47–53. DOI: 10.1166/jbn.2005.012.
  • Sadhasivam, S.; Shanmugam, P.; Veerapandian, M.; Subbiah, R.; Yun, K. Biogenic Synthesis of Multidimensional Gold Nanoparticles Assisted by Streptomyces hygroscopicus and Its Electrochemical and Antibacterial Properties. Biometals 2012, 25, 351–360. DOI: 10.1007/s10534-011-9506-6.
  • Lee, J. H.; Cho, M. H.; Lee, J. 3-Indolylacetonitrile Decreases Escherichia coli O157:H7 Biofilm Formation and Pseudomonas aeruginosa Virulence. Environ. Microbiol. 2011, 13, 62–73. DOI: 10.1111/j.1462-2920.2010.02308.x.
  • Khiralla, G. M.; El-Deeb, B. A. Antimicrobial and Antibiofilm Effects of Selenium Nanoparticles on Some Foodborne Pathogens. LWT Food Sci. Technol. 2015, 63, 1001–1007. DOI: 10.1016/j.lwt.2015.03.086.
  • Kabiri, F.; Aghaei, S. S.; Pourbabaee, A. A.; Soleimani, M.; Komeili Movahhed, T. Manganese Mine Actinobacterial Mediated Gold Nanoparticles Synthesis and Their Antibacterial Activities. Qom Univ. Med. Sci. J. 2021, 15, 178–187. DOI: 10.52547/qums.15.3.178.
  • Khan, F.; Manivasagan, P.; Pham, D. T. N.; Oh, J.; Kim, S.-K.; Kim, Y.-M. Antibiofilm and Antivirulence Properties of Chitosan-Polypyrrole Nanocomposites to Pseudomonas aeruginosa. Microb. Pathog. 2019, 128, 363–373. DOI: 10.1016/j.micpath.2019.01.033.
  • Lingabathula, H.; Yellu, N. Cytotoxicity, Oxidative Stress, and Inflammation in Human Hep G2 Liver Epithelial Cells following Exposure to Gold Nanorods. Toxicol. Mech. Methods 2016, 26, 340–347. DOI: 10.3109/15376516.2016.1164268.
  • Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. DOI: 10.1016/S0023-6438(95)80008-5.
  • Das, S. K.; Das, A. R.; Guha, A. K. Microbial Synthesis of Multishaped Gold Nanostructures. Small 2010, 6, 1012–1021. DOI: 10.1002/smll.200902011.
  • Kumar, K. P.; Paul, W.; Sharma, C. P. Green Synthesis of Gold Nanoparticles with Zingiber Officinale Extract: Characterization and Blood Compatibility. Process Biochem. 2011, 46, 2007–2013. DOI: 10.1016/j.procbio.2011.07.011.
  • Mukherjee, P.; Senapati, S.; Mandal, D.; Ahmad, A.; Khan, M. I.; Kumar, R.; Sastry, M. Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium oxysporum. ChemBioChem. 2002, 3, 461–463. DOI: 10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X.
  • Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R.; Sastry, M. Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. Langmuir 2003, 19, 3550–3553. DOI: 10.1021/la026772l.
  • Waghmare, S. S.; Deshmukh, A. M.; Sadowski, Z. Biosynthesis, Optimization, Purification and Characterization of Gold Nanoparticles. Afr. J. Microbiol. Res. 2014, 8, 138–146.
  • Składanowski, M.; Wypij, M.; Laskowski, D.; Golińska, P.; Dahm, H.; Rai, M. Silver and Gold Nanoparticles Synthesized from Streptomyces sp. isolated from Acid Forest Soil with Special Reference to Its Antibacterial Activity against Pathogens. J. Clust. Sci. 2017, 28, 59–79. DOI: 10.1007/s10876-016-1043-6.
  • Pimprikar, P. S.; Joshi, S. S.; Kumar, A. R.; Zinjarde, S. S.; Kulkarni, S. K. Influence of Biomass and Gold Salt Concentration on Nanoparticle Synthesis by the Tropical Marine Yeast Yarrowia lipolytica NCIM 3589. Colloids Surf. B Biointerfaces 2009, 74, 309–316. DOI: 10.1016/j.colsurfb.2009.07.040.
  • Kalishwaralal, K.; Deepak, V.; Ram Kumar Pandian, S.; Kottaisamy, M.; BarathmaniKanth, S.; Kartikeyan, B.; Gurunathan, S. Biosynthesis of Silver and Gold Nanoparticles Using Brevibacterium casei. Colloids Surf. B Biointerfaces 2010, 77, 257–262. DOI: 10.1016/j.colsurfb.2010.02.007.
  • Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 2006, 6, 662–668. DOI: 10.1021/nl052396o.
  • Talat, M.; Singh, A. K.; Srivastava, O. Optimization of Process Variables by Central Composite Design for the Immobilization of Urease Enzyme on Functionalized Gold Nanoparticles for Various Applications. Bioprocess Biosyst. Eng. 2011, 34, 647–657. DOI: 10.1007/s00449-011-0514-2.
  • Sivalingam, P.; Antony, J. J.; Siva, D.; Achiraman, S.; Anbarasu, K. Mangrove Streptomyces sp. BDUKAS10 as Nanofactory for Fabrication of Bactericidal Silver Nanoparticles. Colloids Surf. B Biointerfaces 2012, 98, 12–17. DOI: 10.1016/j.colsurfb.2012.03.032.
  • Tamuly, C.; Hazarika, M.; Borah, S. C.; Das, M. R.; Boruah, M. P. In Situ Biosynthesis of Ag, Au and Bimetallic Nanoparticles Using Piper pedicellatum C.DC: Green Chemistry Approach. Colloids Surf. B Biointerfaces 2013, 102, 627–634. DOI: 10.1016/j.colsurfb.2012.09.007.
  • Manivasagan, P.; Venkatesan, J.; Kang, K.-H.; Sivakumar, K.; Park, S.-J.; Kim, S.-K. Production of α-Amylase for the Biosynthesis of Gold Nanoparticles Using Streptomyces sp. MBRC-82. Int. J. Biol. Macromol. 2015, 72, 71–78. DOI: 10.1016/j.ijbiomac.2014.07.045.
  • Prabha, S.; Arya, G.; Chandra, R.; Ahmed, B.; Nimesh, S. Effect of Size on Biological Properties of Nanoparticles Employed in Gene Delivery. Artif. Cells. Nanomed. Biotechnol. 2016, 44, 83–91. DOI: 10.3109/21691401.2014.913054.
  • Khadivi Derakhshan, F.; Dehnad, A.; Salouti, M. Extracellular Biosynthesis of Gold Nanoparticles by Metal Resistance Bacteria: Streptomyces griseus. Synth. React. Inorg. Metal Org. Nano Metal Chem. 2012, 42, 868–871. DOI: 10.1080/15533174.2011.618484.
  • Rai, M.; Ingle, A. P.; Gaikwad, S.; Gupta, I.; Gade, A.; Silvério da Silva, S. Nanotechnology Based Anti-Infectives to Fight Microbial Intrusions. J. Appl. Microbiol. 2016, 120, 527–542. DOI: 10.1111/jam.13010.
  • Magudapathy, P.; Gangopadhyay, P.; Panigrahi, B. K.; Nair, K. G. M.; Dhara, S. Electrical Transport Studies of Ag Nanoclusters Embedded in Glass Matrix. Phys. B 2001, 299, 142–146. DOI: 10.1016/S0921-4526(00)00580-9.
  • Narayanan, K. B.; Sakthivel, N. Phytosynthesis of Gold Nanoparticles Using Leaf Extract of Coleus amboinicus Lour. Mater. Charact. 2010, 61, 1232–1238. DOI: 10.1016/j.matchar.2010.08.003.
  • Leff, D. V.; Brandt, L.; Heath, J. R. Synthesis and Characterization of Hydrophobic, Organically-Soluble Gold Nanocrystals Functionalized with Primary Amines. Langmuir 1996, 12, 4723–4730. DOI: 10.1021/la960445u.
  • Bindhu, M.; Umadevi, M. Antibacterial Activities of Green Synthesized Gold Nanoparticles. Mater. Lett. 2014, 120, 122–125. DOI: 10.1016/j.matlet.2014.01.108.
  • Gupta, S.; Bector, S. Biosynthesis of Extracellular and Intracellular Gold Nanoparticles by Aspergillus fumigatus and A. flavus. Antonie Van Leeuwenhoek 2013, 103, 1113–1123. DOI: 10.1007/s10482-013-9892-6.
  • Ranjitha, V.; Rai, V. R. Actinomycetes Mediated Synthesis of Gold Nanoparticles from the Culture Supernatant of Streptomyces griseoruber with Special Reference to Catalytic Activity. 3 Biotech 2017, 7, 299. DOI: 10.1007/s13205-017-0930-3.
  • Babakhani, P. The Impact of Nanoparticle Aggregation on Their Size Exclusion during Transport in Porous Media: One-and Three-Dimensional Modelling Investigations. Sci. Rep. 2019, 9, 1–12. DOI: 10.1038/s41598-019-50493-6.
  • Das, S. K.; Dickinson, C.; Lafir, F.; Brougham, D. F.; Marsili, E. Synthesis, Characterization and Catalytic Activity of Gold Nanoparticles Biosynthesized with Rhizopus oryzae Protein Extract. Green Chem. 2012, 14, 1322–1334. DOI: 10.1039/c2gc16676c.
  • Chapman, J.; Weir, E.; Regan, F. Period Four Metal Nanoparticles on the Inhibition of Biofouling. Colloids Surf. B Biointerfaces 2010, 78, 208–216. DOI: 10.1016/j.colsurfb.2010.03.002.
  • Singh, P.; Pandit, S.; Beshay, M.; Mokkapati, V. R. S. S.; Garnaes, J.; Olsson, M. E.; Sultan, A.; Mackevica, A.; Mateiu, R. V.; Lütken, H.; et al. Anti-Biofilm Effects of Gold and Silver Nanoparticles Synthesized by the Rhodiola rosea Rhizome Extracts. Artif. Cells. Nanomed. Biotechnol. 2018, 46, S886–S899. DOI: 10.1080/21691401.2018.1518909.
  • Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Mohan, S.; Venkatesh, K. S.; Esakkirajan, M.; Kaleeswarran, P.; Alharbi, N. S.; Kadaikunnan, S.; Govindarajan, M.; et al. Green Synthesis of Silver, Gold and Silver/Gold Bimetallic Nanoparticles Using the Gloriosa Superba Leaf Extract and Their Antibacterial and Antibiofilm Activities. Microb. Pathog. 2016, 101, 1–11. DOI: 10.1016/j.micpath.2016.10.011.
  • Mata, R.; Nakkala, J. R.; Sadras, S. R. Polyphenol Stabilized Colloidal Gold Nanoparticles from Abutilon indicum Leaf Extract Induce Apoptosis in HT-29 Colon Cancer Cells. Colloids Surf. B Biointerfaces 2016, 143, 499–510. DOI: 10.1016/j.colsurfb.2016.03.069.
  • Raghunandan, D.; Ravishankar, B.; Sharanbasava, G.; Mahesh, D. B.; Harsoor, V.; Yalagatti, M. S.; Bhagawanraju, M.; Venkataraman, A. Anti-Cancer Studies of Noble Metal Nanoparticles Synthesized Using Different Plant Extracts. Cancer Nanotechnol. 2011, 2, 57–65. DOI: 10.1007/s12645-011-0014-8.
  • Khoobchandani, M.; Zambre, A.; Katti, K.; Lin, C.-H.; Katti, K. V. Green Nanotechnology from Brassicaceae: Development of Broccoli Phytochemicals–Encapsulated Gold Nanoparticles and Their Applications in Nanomedicine. Int. J. Green Nanotechnol. 2013, 1, 194308921350947. DOI: 10.1177/1943089213509474.
  • Nie, Z.; Liu, K. J.; Zhong, C.-J.; Wang, L.-F.; Yang, Y.; Tian, Q.; Liu, Y. Enhanced Radical Scavenging Activity by Antioxidant-Functionalized Gold Nanoparticles: A Novel Inspiration for Development of New Artificial Antioxidants. Free Radic. Biol. Med. 2007, 43, 1243–1254. DOI: 10.1016/j.freeradbiomed.2007.06.011.
  • Du, L.; Suo, S.; Wang, G.; Jia, H.; Liu, K. J.; Zhao, B.; Liu, Y. Mechanism and Cellular Kinetic Studies of the Enhancement of Antioxidant Activity by Using Surface-Functionalized Gold Nanoparticles. Chemistry 2013, 19, 1281–1287. DOI: 10.1002/chem.201203506.
  • Manivasagan, P.; Alam, M. S.; Kang, K.-H.; Kwak, M.; Kim, S.-K. Extracellular Synthesis of Gold Bionanoparticles by Nocardiopsis sp. and Evaluation of Its Antimicrobial, Antioxidant and Cytotoxic Activities. Bioprocess Biosyst. Eng. 2015, 38, 1167–1177. DOI: 10.1007/s00449-015-1358-y.
  • Veeraapandian, S.; Sawant, S. N.; Doble, M. Antibacterial and Antioxidant Activity of Protein Capped Silver and Gold Nanoparticles Synthesized with Escherichia coli. J. Biomed. Nanotechnol. 2012, 8, 140–148. DOI: 10.1166/jbn.2012.1356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.