169
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Adsorption and immobilization of β-glucosidase from Thermoascus aurantiacus on macroporous cryogel by hydrophobic interaction

, , &

References

  • Srivastava, N.; Rathour, R.; Jha, S.; Pandey, K.; Srivastava, M.; Thakur, V. K.; Sengar, R. S.; Gupta, V. K.; Mazumder, P. B.; Khan, A. F.; Mishra, P. K. Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application. Biomol. 2019, 9, 220.
  • Karami, F.; Ghorbani, M.; Mahoonak, A. S.; Khodarahmi, R. Fast, Inexpensive Purification of β-Glucosidase from Aspergillus niger and Improved Catalytic/Physicochemical Properties upon the Enzyme Immobilization: Possible Broad Prospects for Industrial Applications. LWT. 2020, 118, 108770. DOI: 10.1016/j.lwt.2019.108770.
  • Guo, K. W. Immobilization Methods of Enzymes: Part I. In Approaches to Enhance Industrial Production of Fungal Cellulases; Srivastava, M., Srivastava, N., Ramteke, P. W., Mishra, P. K., Eds.; Gewerbestrasse: Springer Nature Switzerland, 2019; pp. 117–136.
  • Souza, L. T. A.; Veríssimo, L. A. A.; João, B. C. P.; Santoro, M. M.; Resende, R. R.; Mendes, A. A. Imobilização Enzimática: princípios Fundamentais e Tipos de Suporte. In Biotecnologia Aplicada à Agroindústria; Resende, R. R., Ed.; Edgard Blucher Ltda: São Paulo, 2017; pp. 529–568.
  • Mohamad, N. R.; Haziqah, N.; Marzuki, C.; Buang, N. A.; Huyop, F.; Wahab, R. A. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220.
  • Liese, A.; Hilterhaus, L. Evaluation of Immobilized Enzymes for Industrial Applications. Chem. Soc. Rev. 2013, 42, 6236–6249.
  • Neves, I. C. O.; Rodrigues, A. A.; Valentim, T. T.; Meira, A.; Silva, S. H.; Veríssimo, L. A. A.; De Resende, J. V. Amino acid-based Hydrophobic Affinity Cryogel for Protein Purification from Ora-Pro-Nobis (Pereskia aculeata Miller) Leaves J. Chromatogr. B. 2020, 1161, 122435.
  • De Oliveira, A. C. F.; Neves, I. C. O.; Saraiva, J. A. M.; De Carvalho, M. F. F.; Batista, G. A.; Veríssimo, L. A. A.; De Resende, J. V. Capture of Lysozyme on Macroporous Cryogels by Hydrophobic Affinity Chromatography. Sep. Sci. Technol. 2020, 55, 2012–2024.
  • Tomaz, C. T.; Rocha, A. S.; Queiroz, J. A. Hydrophobic Interaction Chromatography of Trichoderma Reesei Cellulases on Polypropylene Glycol–Sepharose. Sep. Sci. Technol. 2002, 37, 1641–1651.
  • Mól, P. C. G.; Veríssimo, L. A. A.; Minim, L. A.; Boscolo, M.; Gomes, E.; Da Silva, R. Production and Capture of β-Glucosidase from Thermoascus Aurantiacus Using a Tailor Made Anionic Cryogel. Process. Biochem. 2019, 82, 75–83.
  • Mól, P. C. G.; Veríssimo, L. A. A.; Eller, M. R.; Minim, V. P. R.; Minim, L. A. Development of an Affinity Cryogel for One Step Purification of Lysozyme from Chicken Egg White. J. Chromatogr. B. 2017, 1044–1045, 17–23.
  • Carvalho, B. M. A.; Carvalho, L. M.; Silva, W. F.; Jr. Minim, L. A.; Soares, A. M.; Carvalho, G. G. P.; Da Silva, S. L. Direct Capture of Lactoferrin from Cheese Whey on Supermacroporous Column of Polyacrylamide Cryogel with Copper Ions. Food Chem. 2014, 154, 308–314.
  • Tripathi, A.; Kumar, A. Integrated Approach for β-Glucosidase Purification from Non-Clarified Crude Homogenate Using Macroporous Cryogel Matrix. Sep. Sci. Technol. 2013, 48, 2410–2417.
  • Arvidsson, P.; Plieva, F. M.; Savina, IN.; Lozinsky, V. I.; Fexby, S.; Bulow, F.; Galaev, I. Y.; Mattiasson, B. Chromatography of Microbial Cells Using Continuous Supermacroporous Affinity and Ion-Exchange Columns. J. Chromatogr. A. 2002, 977, 27–38.
  • Khan, S.; Lindahl, S.; Turner, C.; Karlsson, E. N. Immobilization of Thermostable β-Glucosidase Variants on Acrylic Supports for Biocatalytic Processes in Hot Water. J. Mol. Catal. B. Enzym. 2012, 80, 28–38.
  • Huang, C.; Feng, Y.; Patel, G.; Xu, X-q.; Qian, J.; Liu, Q.; Kai, G-y. Production, Immobilization and Characterization of Beta-Glucosidase for Application in Cellulose Degradation From a Novel Aspergillus versicolor. Int. J. Biol. Macromol. 2021, 177, 437–446.
  • Venezia, V.; Sannino, F.; Costantini, A.; Silvestri, B.; Cimino, S.; Califano, V. Mesoporous Silica Nanoparticles for β-Glucosidase Immobilization by Templating with a Green Material: Tannic Acid. Micropor. Mesopor. Mat. 2020, 302, 110203.
  • Zhou, Z.; Ju, X.; Zhou, M.; Xu, X.; Fu, J.; Li, L. An Enhanced Ionic Liquid-Tolerant Immobilized Cellulase System via Hydrogel Microsphere for Improving in Situ Saccharification of Biomass. Bioresource Technol. 2019, 294, 122146.
  • Tan, I. S.; Lee, K. T. Immobilization of β-Glucosidase from Aspergillus niger on κ-Carrageenan Hybrid Matrix and Its Application on the Production of Reducing Sugar from Macroalgae Cellulosic Residue. Bioresour. Technol. 2015, 184, 386–394.
  • Borges, D. G.; Baraldo, A.; Farinas, C. S.; Giordano, RdLC.; Tardioli, P. W. Enhanced Saccharification of Sugarcane Bagasse Using Soluble Cellulase Supplemented with Immobilized β-Glucosidase. Bioresour. Technol. 2014, 167, 206–213.
  • Chang, J.; Lee, Y.-S.; Fang, S.-J.; Park, D.-J.; Choi, Y.-L. Hydrolysis of Isoflavone Glycoside by Immobilization of β-Glucosidase on a Chitosan-Carbon in Two-Phase System. Int. J. Biol. Macromol. 2013, 61, 465–470.
  • González-Pombo, P.; Fariña, L.; Carrau, F.; Batista-Viera, F.; Brena, B. M. A Novel Extracellular β-Glucosidase from Issatchenkia Terricola: Isolation, Immobilization and Application for Aroma Enhancement of White Muscat Wine. Process Biochem. 2011, 46, 385–389.
  • Su, E.; Xia, T.; Gao, L.; Dai, Q.; Zhang, Z. Immobilization of β-Glucosidase and Its Aroma Increasing Effect on Tea Beverage. Food Bioprod. Process. 2010, 88, 83–89.
  • Gómez, J. M.; Romero, M. D.; Fernández, T. M. Immobilization of β-Glucosidase on Carbon Nanotubes. Catal. Lett. 2005, 101, 275–278.
  • Ortega, N.; Busto, M. D.; Perez-Mateos, M. Optimisation of β-Glucosidase Entrapment in Alginate and Polyacrylamide Gels. Bioresource Technol. 1998, 64, 105–111.
  • Asic, A.; Besic, L.; Muhovic, I.; Dogan, S.; Turan, Y. Purification and Characterization of β-Glucosidase from Agaricus Bisporus (White Button Mushroom). Protein J. 2015, 34, 453–461.
  • Kara, H. E.; Sinan, S.; Turan, Y. Purification of Beta-Glucosidase from Olive (Olea Europaea L.) Fruit Tissue with Specifically Designed Hydrophobic Interaction Chromatography and Characterization of the Purified Enzyme. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 1507–1512.
  • Rashid, M. H.; Siddiqui, K. S. Purification and Characterization of a Beta-Glucosidase from Aspergillus niger. Folia Microbiol. 1997, 42, 544–550.
  • Leite, R. S. R.; Alves-Prado, H. F.; Cabral, H.; Pagnocca, F. C.; Gomes, E.; Da Silva, R. Production and Characteristics Comparison of Crude β-Glucosidases Produced by Microorganisms Thermoascus Aurantiacus e Aureobasidium Pullulans in Agricultural Wastes. Enzyme Microb. Tech. 2008, 43, 391–395.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254.
  • Yan, J.; Pan, G.; Ding, C.; Quan, G. Kinetic and Thermodynamic Parameters of Beta-Glucosidase Immobilized on Various Colloidal Particles from a Paddy Soil. Colloids Surf. B. Biointerfaces. 2010, 79, 298–303.
  • Savina, IN.; Galaev, I. Y.; Mattiasson, B. Anion-Exchange Supermacroporous Monolithic Matrices with Grafted Polymer Brushes of N,N-Dimethylaminoethyl-Methacrylate. J. Chromatogr. A. 2005, 1092, 199–205.
  • Vieira, A. P.; Santana, S. A. A.; Bezerra, C. W. B.; Silva, H. A. S.; De Melo, J. C. P.; Silva Filho, E. C.; Airoldi, C. Copper Sorption from Aqueous Solutions and Sugar Cane Spirits by Chemically Modified Babassu Coconut (Orbignya Speciosa) Mesocarp. Chem. Eng. Sci. 2010, 161, 99–105.
  • Yao, K.; Shen, S.; Yun, J.; Wang, L.; He, X.; Yu, X. Preparation of Polyacrylamide-Based Supermacroporous Monolithic Cryogel Beds under Freezing-Temperature Variation Conditions. Chem. Eng. Sci. 2006, 61, 6701–6708.
  • Yao, K.; Yun, J.; Shen, S.; Wang, L.; He, X.; Yu, X. Characterization of a Novel Continuous Supermacroporous Monolithic Cryogel Embedded with Nanoparticles for Protein Chromatography. J. Chromatogr. A. 2006, 1109, 103–110.
  • Furusawa, T.; Suzuki, M.; Smith, J. M. Rate Parameters in Heterogeneous Catalysis by Pulse Techniques. Catal. Rev. 1976, 13, 43–76.
  • Levenspiel, O. Chemical Reaction Engineering; John Wiley & Sons, New York, 1999.
  • Guiochon, G. The Limits of the Separation Power of Unidimensional Column Liquid Chromatography. J. Chromatogr. A. 2006, 1126, 6–49.
  • Queiroz, J. A.; Tomaz, C. T.; Cabral, J. M. S. Hydrophobic Interaction Chromatography of Proteins. J. Biotechnol. 2001, 87, 143–159.
  • Janson, J. C.; Rydén, L. Protein Purification: Principles, High-Resolution Methods and Applications; John Wiley and Sons, New York, 2011.
  • Hackemann, E.; Hasse, H. Influence of Mixed Electrolytes and pH on Adsorption of Bovine Serum Albumin in Hydrophobic Interaction Chromatography. J. Chromatogr. A. 2017, 1521, 73–79.
  • Bedino, S.; Testore, G.; Obert, F. Comparative Study of Glucosidases from the Thermophilic Fungus Thermoascus Aurantiacus Miehe. Purification and Characterization of Intracellular Beta-Glucosidase. Ital. J. Biochem. 1985, 34, 341–355.
  • Leite, R. S. R.; Gomes, E.; Da Silva, R. Characterization and Comparison of Thermostability of Purified β-Glucosidases from a Mesophilic Aureobasidium Pullulans and a Thermophilic Thermoascus Aurantiacus. Process Biochem. 2007, 42, 1101–1106.
  • Melander, W.; Horváth, C. Salt Effects on Hydrophobic Interactions in Precipitation and Chromatography of Proteins: An Interpretation of the Lyotropic Series. Arch. Biochem. Biophys. 1977, 188, 200–215.
  • Da Silva, T. M.; Pessela, B. C.; Da Silva, J. C. R.; Lima, M. S.; Jorge, J. A.; Guisan, J. M.; Polizeli, M. Immobilization and High Stability of an Extracellular β-Glucosidase from Aspergillus Japonicus by Ionic Interactions. J. Mol. Catal. B. Enzym. 2014, 104, 95–100.
  • Chang, M.-Y.; Juang, R.-S. Use of Chitosan–Clay Composite as Immobilization Support for Improved Activity and Stability of β-Glucosidase. Biochem. Eng. J. 2007, 35, 93–98.
  • Irfan, M.; Ghazanfar, M.; Rehman, A. U.; Siddique, A. Strategies to Reuse Cellulase: Immobilization of Enzymes (Part II). In: Approaches to Enhance Industrial Production of Fungal Cellulases; Srivastava, M., Srivastava, N., Ramteke, P. W., Mishra, P. K., Eds.; Gewerbestrasse: Springer Nature Switzerland, 2019: pp. 137–148.
  • Chen, T.; Yang, W.; Guo, Y.; Yuan, R.; Xu, L.; Yan, Y. Enhancing Catalytic Performance of β-Glucosidase via Immobilization on Metal Ions Chelated Magnetic Nanoparticles. Enzyme Microb Technol. 2014, 63, 50–57.
  • Zhang, J.; Wang, D.; Pan, J.; Wang, J.; Zhao, H.; Li, Q.; Zhou, X. Efficient Resveratrol Production by Immobilized β-Glucosidase on Cross-Linked Chitosan Microsphere Modified by l-Lysine. J. Mol. Catal. B. Enzym. 2014, 104, 29–34.
  • Sui, Y.; Cui, Y.; Xia, G.; Peng, X.; Yuan, G.; Sun, G. A Facile Route to Preparation of Immobilized Cellulase on Polyurea Microspheres for Improving Catalytic Activity and Stability. Process Biochem. 2019, 87, 73–82.
  • Liang, W.; Cao, X. Preparation of a pH-Sensitive Polyacrylate Amphiphilic Copolymer and Its Application in Cellulase Immobilization. Bioresource Technol. 2012, 116, 140–146.
  • Çelik, A.; Dincer, A.; Aydemir, T. Characterization of β-Glucosidase Immobilized on Chitosan-Multiwalled Carbon Nanotubes (MWCNTS) and Their Application on Tea Extracts for Aroma Enhancement. Int. J. Biol. Macromol. 2016, 89, 406–414.
  • Marasović, M.; Marasović, T.; Miloš, M. Robust Nonlinear Regression in Enzyme Kinetic Parameters Estimation. J. Chem. 2017, 2017, 1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.