452
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Optimization of hazelnut husk medium for pullulan production by a domestic A. pullulans strain

, &

References

  • Haghighatpanah, N.; Mirzaee, H.; Khodaiyan, F.; Kennedy, J. F.; Aghakhani, A.; Hosseini, S. S.; Jahanbin, K. Optimization and Characterization of Pullulan Produced by a Newly Identified Strain of Aureobasidium Pullulans. Int. J. Biol. Macromol. 2020, 152, 305–313. DOI: 10.1016/j.ijbiomac.2020.02.226.
  • Xia, J.; Xu, J.; Liu, X.; Xu, J.; Wang, X.; Li, X. Economic co-production of poly(malic acid) and pullulan from Jerusalem artichoke tuber by Aureobasidium pullulans HA-4D. BMC Biotechnol. 2017, 17, 20–10. DOI: 10.1186/s12896-017-0340-y.
  • Sugumaran, K.; Gowthami, E.; Swathi, B.; Elakkiya, S.; Srivastava, S.; Ravikumar, R.; Gowdhaman, D.; Ponnusami, V. Production of Pullulan by Aureobasidium Pullulans from Asian Palm Kernel: A Novel Substrate. Carbohydr. Pol. 2013, 92, 697–703. DOI: 10.1016/j.carbpol.2012.09.062.
  • Mirzaee, H.; Khodaiyan, F.; Kennedy, J. F.; Hosseini, S. S. Production, Optimization and Characterization of Pullulan from Sesame Seed Oil Cake as a New Substrate by Aureobasidium Pullulans. Carbohydr. Polym. Technol. Appl. 2020, 1, 100004.
  • Sugumaran, K.; Ponnusami, V. Review on Production, Downstream Processing and Characterization of Microbial Pullulan. Carbohydr. Pol. 2017, 173, 573–591.
  • Choudhury, A. R.; Saluja, P.; Prasad, G. Pullulan Production by an Osmotolerant Aureobasidium Pullulans RBF-4A3 Isolated from Flowers of Caesulia Axillaris. Carbohydr. Pol. 2011, 83, 1547–1552. DOI: 10.1016/j.carbpol.2010.10.003.
  • Suzuki, T.; Kusano, K.; Kondo, N.; Nishikawa, K.; Kuge, T.; Ohno, N. Biological Activity of High-Purity β-1, 3-1, 6-Glucan Derived from the Black Yeast Aureobasidium Pullulans: A Literature Review. Nutrients. 2021, 13, 242. DOI: 10.3390/nu13010242.
  • Chlebowska-Śmigiel, A.; Kycia, K.; Neffe-Skocińska, K.; Kieliszek, M.; Gniewosz, M.; Kołożyn-Krajewska, D. Effect of Pullulan on Physicochemical, Microbiological, and Sensory Quality of Yogurts. Curr. Pharm. Biotechnol. 2019, 20, 489–496.
  • Chlebowska-Smigiel, A.; Gniewosz, M.; Kieliszek, M.; Bzducha-Wrobel, A. The Effect of Pullulan on the Growth and Acidifying Activity of Selected Stool Microflora of Human. Curr. Pharm. Biotechnol. 2017, 18, 121–126.
  • Prasongsuk, S.; Lotrakul, P.; Ali, I.; Bankeeree, W.; Punnapayak, H. The Current Status of Aureobasidium Pullulans in Biotechnology. Folia Microbiol. (Praha). 2018, 63, 129–140.
  • Singh, R.; Kaur, N. Understanding Response Surface Optimization of Medium Composition for Pullulan Production from de-Oiled Rice Bran by Aureobasidium Pullulans. Food Sci. Biotechnol. 2019, 28, 1507–1520.
  • Mishra, B. Major Problems Addressed in Pullulan Production: A Review. Adv. Biotechnol. Microbiol. 2017, 6, 555696.
  • He, C.; Zhang, Z.; Zhang, Y.; Wang, G.; Wang, C.; Wang, D.; Wei, G. Efficient Pullulan Production by Aureobasidium Pullulans Using Cost-Effective Substrates. Int. J. Biol. Macromol. 2021, 186, 544–553. DOI: 10.1016/j.ijbiomac.2021.07.068.
  • West, T. P. Fungal Production of the Polysaccharide Pullulan from a Plant Hydrolysate. Zeitschrift Für Naturforschung C. 2017, 72, 491–495. DOI: 10.1515/znc-2017-0032.
  • Israilides, C.; Smith, A.; Scanlon, B.; Barnett, C. Pullulan from Agro-Industrial Wastes. Biotechnol. Genet. Eng. Rev. 1999, 16, 309–324. DOI: 10.1080/02648725.1999.10647981.
  • Hamidi, M.; Kennedy, J. F.; Khodaiyan, F.; Mousavi, Z.; Hosseini, S. S. Production Optimization, Characterization and Gene Expression of Pullulan from a New Strain of Aureobasidium Pullulans. Int. J. Biol. Macromol. 2019, 138, 725–735.
  • Wani, S. M.; Mir, S. A.; Khanday, F.; Masoodi, F. Advances in Pullulan Production from Agro-Based Wastes by Aureobasidium Pullulans and Its Applications. Innov. Food Sci. Emerg. Technol. 2021, 74, 102846. DOI: 10.1016/j.ifset.2021.102846.
  • Singh, R. S.; Kaur, N.; Kennedy, J. F. Pullulan Production from Agro-Industrial Waste and Its Applications in Food Industry: A Review. Carbohydr. Pol. 2019, 217, 46–57. DOI: 10.1016/j.carbpol.2019.04.050.
  • Wang, D.; Ju, X.; Zhou, D.; Wei, G. Efficient Production of Pullulan Using Rice Hull Hydrolysate by Adaptive Laboratory Evolution of Aureobasidium Pullulans. Bioresour. Technol. 2014, 164, 12–19.
  • Thirumavalavan, K.; Manikkadan, T.; Dhanasekar, R. Pullulan Production from Coconut by-Products by Aureobasidium Pullulans. Afr. J. Biotechnol. 2009, 8, 254–258.
  • Sugumaran, K.; Jothi, P.; Ponnusami, V. Bioconversion of Industrial Solid Waste—Cassava Bagasse for Pullulan Production in Solid State Fermentation. Carbohydr. Pol. 2014, 99, 22–30. DOI: 10.1016/j.carbpol.2013.08.039.
  • Göksungur, Y.; Uzunoğulları, P.; Dağbağlı, S. Optimization of Pullulan Production from Hydrolysed Potato Starch Waste by Response Surface Methodology. Carbohydr. Pol. 2011, 83, 1330–1337. DOI: 10.1016/j.carbpol.2010.09.047.
  • Kazemi, M.; Khodaiyan, F.; Hosseini, S. S.; Najari, Z. An Integrated Valorization of Industrial Waste of Eggplant: Simultaneous Recovery of Pectin, Phenolics and Sequential Production of Pullulan. Waste Manage. 2019, 100, 101–111. DOI: 10.1016/j.wasman.2019.09.013.
  • Haghighatpanah, N.; Khodaiyan, F.; Kennedy, J. F.; Hosseini, S. S. Optimization and Characterization of Pullulan Obtained from Corn Bran Hydrolysates by Auerobasidium Pullulans KY767024. Biocatal. Agric. Biotechnol. 2021, 33, 101959. DOI: 10.1016/j.bcab.2021.101959.
  • Yang, J.; Zhang, Y.; Zhao, S.; Zhou, Q.; Xin, X.; Chen, L. Statistical Optimization of Medium for Pullulan Production by Aureobasidium Pullulans NCPS2016 Using Fructose and Soybean Meal Hydrolysates. Molecules. 2018, 23, 1334–1350. DOI: 10.3390/molecules23061334.
  • Akdeniz Oktay, B.; Bozdemir, M. T.; Özbaş, Z. Y. Evaluation of Some Agro-Industrial Wastes as Fermentation Medium for Pullulan Production by Aureobasidium Pullulans AZ-6. Curr. Microbiol. 2022, 79, 92–107.
  • Sugumaran, K.; Sindhu, R.; Sukanya, S.; Aiswarya, N.; Ponnusami, V. Statistical Studies on High Molecular Weight Pullulan Production in Solid State Fermentation Using Jack Fruit Seed. Carbohydr. Pol. 2013, 98, 854–860. DOI: 10.1016/j.carbpol.2013.06.071.
  • Şenol, H.; Zenk, H. Determination of the Biogas Potential in Cities with Hazelnut Production and Examination of Potential Energy Savings in Turkey. Fuel. 2020, 270, 117577. DOI: 10.1016/j.fuel.2020.117577.
  • Surek, E.; Buyukkileci, A. O.; Yegin, S. Processing of Hazelnut (Corylus Avellana L.) Shell Autohydrolysis Liquor for Production of Low Molecular Weight Xylooligosaccharides by Aureobasidium Pullulans NRRL Y–2311–1 Xylanase. Ind. Crops Prod. 2021, 161, 113212. DOI: 10.1016/j.indcrop.2020.113212.
  • Aşkın, T.; Aygün, S. Does Hazelnut Husk Compost (HHC) Effect on Soil Water Holding Capacity (WHC)? an Environmental Approach. Eurasian J. Soil Sci. 2018, 7, 87–92.
  • Pinar, O.; Karaosmanoğlu, K.; Sayar, N. A.; Kula, C.; Kazan, D.; Sayar, A. A. Assessment of Hazelnut Husk as a Lignocellulosic Feedstock for the Production of Fermentable Sugars and Lignocellulolytic Enzymes. 3 Biotech. 2017, 7, 367. DOI: 10.1007/s13205-017-1002-4.
  • Chen, G.; Zhu, Y.; Zhang, G.; Liu, H.; Wei, Y.; Wang, P.; Wang, F.; Xian, M.; Xiang, H.; Zhang, H. Optimization and Characterization of Pullulan Production by a Newly Isolated High-Yielding Strain Aureobasidium Melanogenum. Prep. Biochem. Biotechnol. 2019, 49, 557–566.
  • Yolmeh, M.; Jafari, S. M. Applications of Response Surface Methodology in the Food Industry Processes. Food Bioprocess Technol. 2017, 10, 413–433. DOI: 10.1007/s11947-016-1855-2.
  • Singh, R. S.; Singh, H.; Saini, G. K. Response Surface Optimization of the Critical Medium Components for Pullulan Production by Aureobasidium Pullulans FB-1. Appl. Biochem. Biotechnol. 2009, 152, 42–53.
  • Uzuner, S.; Cekmecelioglu, D. Hydrolysis of Hazelnut Shells as a Carbon Source for Bioprocessing Applications and Fermentation. Int. J. Food Eng. 2014, 10, 799–808. DOI: 10.1515/ijfe-2014-0158.
  • Mujdeci, G.; Arévalo‐Villena, M.; Ozbas, Z. Y.; Briones Pérez, A. Yeast Identification during Fermentation of Turkish Gemlik Olives. J. Food Sc. 2018, 83, 1321–1325. DOI: 10.1111/1750-3841.14124.
  • Ceylan, S.; Ünal, S. The Saccharification of Hazelnut Husks to Produce Bioethanol. Energy Sources. Part A. 2015, 37, 972–979. DOI: 10.1080/15567036.2011.601794.
  • Sharma, N.; Prasad, G.; Choudhury, A. R. Utilization of Corn Steep Liquor for Biosynthesis of Pullulan, an Important Exopolysaccharide. Carbohydr. Pol. 2013, 93, 95–101. DOI: 10.1016/j.carbpol.2012.06.059.
  • Sheng, L.; Zhu, G.; Tong, Q. Effect of Uracil on Pullulan Production by Aureobasidium Pullulans CGMCC1234. Carbohydr. Pol. 2014, 101, 435–437. DOI: 10.1016/j.carbpol.2013.09.063.
  • Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. DOI: 10.1021/ac60147a030.
  • Baş, D.; Boyacı, I. H. Modeling and Optimization I: Usability of Response Surface Methodology. J. Food Eng. 2007, 78, 836–845. DOI: 10.1016/j.jfoodeng.2005.11.024.
  • Urak, S.; Yeniay, O.; Karasu-Yalcin, S. Optimization of Citric Acid Production from a Carrot Juice-Based Medium by Yarrowia lipolytica Using Response Surface Methodology. Ann. Microbiol. 2015, 65, 639–649. DOI: 10.1007/s13213-014-0900-5.
  • Bevilacqua, A.; Corbo, M. R.; Sinigaglia, M. Design of Experiments: A Powerful Tool in Food Microbiology. Current Research. Technol. Edu. Topics Appl. Microbiol. Microb. Biotechnol. 2010, 1419–1429.
  • Cheng, K.-C.; Demirci, A.; Catchmark, J. M.; Puri, V. M. Effects of Initial Ammonium Ion Concentration on Pullulan Production by Aureobasidium Pullulans and Its Modeling. J. Food Eng. 2011, 103, 115–122. DOI: 10.1016/j.jfoodeng.2010.10.004.
  • Wang, D.; Chen, F.; Wei, G.; Jiang, M.; Dong, M. The Mechanism of Improved Pullulan Production by Nitrogen Limitation in Batch Culture of Aureobasidium Pullulans. Carbohydr. Pol. 2015, 127, 325–331. DOI: 10.1016/j.carbpol.2015.03.079.
  • Hilares, R. T.; Resende, J.; Orsi, C.; Ahmed, M.; Lacerda, T.; da Silva, S.; Santos, J. Exopolysaccharide (Pullulan) Production from Sugarcane Bagasse Hydrolysate Aiming to Favor the Development of Biorefineries. Int. J. Biol. Macromol. 2019, 127, 169–177.
  • Chen, G.; Wang, J.; Su, Y.; Zhu, Y.; Zhang, G.; Zhao, H.; Liu, H.; Yang, Y.; Nian, R.; Zhang, H.; et al. Pullulan Production from Synthetic Medium by a New Mutant of Aureobasidium Pullulans. Prep. Biochem. Biotechnol. 2017, 47, 963–969.
  • An, C.; Ma, S.; Chang, F.; Xue, W. Efficient Production of Pullulan by Aureobasidium Pullulans Grown on Mixtures of Potato Starch Hydrolysate and Sucrose. Braz. J. Microbiol. 2017, 48, 180–185.
  • Li, S.; Yi, J.; Yu, X.; Wang, Z.; Wang, L. Preparation and Characterization of Pullulan Derivative/Chitosan Composite Film for Potential Antimicrobial Applications. Int. J. Biol. Macromol. 2020, 148, 258–264. DOI: 10.1016/j.ijbiomac.2020.01.080.
  • Zarei, S.; Khodaiyan, F.; Hosseini, S. S.; Kennedy, J. F. Pullulan Production Using Molasses and Corn Steep Liquor as Agroindustrial Wastes: physiochemical, Thermal and Rheological Properties. Appl. Food Biotechnol. 2020, 7, 263–272.
  • Sugumaran, K.; Shobana, P.; Balaji, P. M.; Ponnusami, V.; Gowdhaman, D. Statistical Optimization of Pullulan Production from Asian Palm Kernel and Evaluation of Its Properties. Int. J. Biol. Macromol. 2014, 66, 229–235.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.