325
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Assessment of various colored lights on the growth pattern and secondary metabolites synthesis in Spirulina platensis

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Borowitzka, M. A. High-Value Products from Microalgae—Their Development and Commercialisation. J. Appl. Phycol. 2013, 25, 743–756. DOI: 10.1007/s10811-013-9983-9.
  • Roberfroid, M. B. Concepts and Strategy of Functional Food Science: The European Perspective. Am. J. Clin. Nutr. 2000, 71, 1660S–1664S. DOI: 10.1093/ajcn/71.6.1660S.
  • Hashemi, A.; Pajoum Shariati, F.; Sohani, E.; Azizi, S.; Hosseinifar, S. Z.; Delavari Amrei, H. CO2 Biofixation by Synechococcus elongatus from the Power Plant Flue Gas under Various Light–Dark Cycles. Clean Tech. Environ. Policy 2020, 22, 1735–1743. DOI: 10.1007/s10098-020-01912-0.
  • Grettenberger, C. L.; Sumner, D. Y.; Wall, K.; Brown, C. T.; Eisen, J.; Mackey, T. J. Insights into the Evolution of Oxygenic Photosynthesis from a Phylogenetically Novel, Low-Light Cyanobacterium. bioRxiv 2018, 334458.
  • Soni, R. A.; Sudhakar, K.; Rana, R. Spirulina–from Growth to Nutritional Product: A Review. Trends Food Sci. Technol. 2017, 69, 157–171. DOI: 10.1016/j.tifs.2017.09.010.
  • Sharmila, D.; Suresh, A.; Indhumathi, J.; Gowtham, K.; Velmurugan, N. Impact of Various Color Filtered LED Lights on Microalgae Growth, Pigments and Lipid Production. Eur. J. Biotechnol. Biosci. 2018, 6, 1–7.
  • Tayebati, H.; Pajoum Shariati, F.; Soltani, N.; Sepasi Tehrani, H. Effect of Various Light Spectra on Amino Acids and Pigment Production of Arthrospira platensis Using Flat-Plate Photobioreactor. Prep. Biochem. Biotechnol. 2021, 1–12. DOI: 10.1080/10826068.2021.1941102.
  • Tebbani, S.; Filali, R.; Lopes, F.; Dumur, D.; Pareau, D. CO2 Biofixation by Microalgae: Modeling, Estimation and Control; John Wiley & Sons, UK, 2014.
  • Fallahi, A.; Rezvani, F.; Asgharnejad, H.; Nazloo, E. K.; Hajinajaf, N.; Higgins, B. Interactions of Microalgae-Bacteria Consortia for Nutrient Removal from Wastewater: A Review. Chemosphere 2021, 272, 129878. DOI: 10.1016/j.chemosphere.2021.129878.
  • Hajinajaf, N.; Fallahi, A.; Rabbani, Y.; Tavakoli, O.; Sarrafzadeh, M.-H. Integrated CO2 Capture and Nutrient Removal by Microalgae Chlorella Vulgaris and Optimization Using Neural Network and Support Vector Regression. Waste Biomass Valor. 2022, 1–22. DOI: 10.1007/s12649-022-01800-2.
  • Fallahi, A.; Hajinajaf, N.; Tavakoli, O.; Sarrafzadeh, M. H. Cultivation of Mixed Microalgae Using Municipal Wastewater: Biomass Productivity, Nutrient Removal, and Biochemical Content. Iran. J. Biotechnol. 2020, 18, e2586.
  • Hashemi, A.; Pajoum Shariati, F.; Heydarinasab, A. The Effect of Instantaneous and Slow-Release Salt Stress Methods on Beta-Carotene Production within Dunaliella salina Cells. Iran J. Chem. Chem. Eng. 2021, 40, 1642–1652.
  • Lehmuskero, A.; Chauton, M. S.; Boström, T. Light and Photosynthetic Microalgae: A Review of Cellular-and Molecular-Scale Optical Processes. Prog. Oceanogr. 2018, 168, 43–56. DOI: 10.1016/j.pocean.2018.09.002.
  • Márquez-Rocha, F. J.; Palma-Ramírez, D.; García-Alamilla, P.; López-Hernández, J. F.; Santiago-Morales, I. S.; Flores-Vela, A. I. Microalgae Cultivation for Secondary Metabolite Production. Microalgae-From Physiology to Application; IntechOpen; London, 2019.
  • Hashemi, A.; Moslemi, M.; Pajoum Shariati, F.; Delavari Amrei, H. Beta‐Carotene Production within Dunaliella salina Cells under Salt Stress Condition in an Indoor Hybrid Helical‐Tubular Photobioreactor. Can. J. Chem. Eng. 2020, 98, 69–74. DOI: 10.1002/cjce.23577.
  • Helliwell, K. E.; Wheeler, G. L.; Leptos, K. C.; Goldstein, R. E.; Smith, A. G. Insights into the Evolution of Vitamin B12 Auxotrophy from Sequenced Algal Genomes. Mol. Biol. Evol. 2011, 28, 2921–2933. DOI: 10.1093/molbev/msr124.
  • Markou, G. Effect of Various Colors of Light-Emitting Diodes (LEDs) on the Biomass Composition of Arthrospira platensis Cultivated in Semi-Continuous Mode. Appl. Biochem. Biotechnol. 2014, 172, 2758–2768. DOI: 10.1007/s12010-014-0727-3.
  • Sathasivam, R.; Radhakrishnan, R.; Hashem, A.; Abd Allah, E. F. Microalgae Metabolites: A Rich Source for Food and Medicine. Saudi J. Biol. Sci. 2019, 26, 709–722. DOI: 10.1016/j.sjbs.2017.11.003.
  • Borowitzka, M.; Beardall, J.; Raven, J. The Physiology of Microalgae, Developments in Applied Phycology. Vol. 10; Springer International Publishing, Switzerland, 2016; pp. 978–973.
  • Kim, S.-K. Handbook of Marine Microalgae: Biotechnology Advances; Elsevier, Oxford, UK, 2015.
  • Berthon, J.-Y.; Nachat-Kappes, R.; Bey, M.; Cadoret, J.-P.; Renimel, I.; Filaire, E. Marine Algae as Attractive Source to Skin Care. Free Radic. Res. 2017, 51, 555–567. DOI: 10.1080/10715762.2017.1355550.
  • da Silva Vaz, B.; Moreira, J. B.; de Morais, M. G.; Costa, J. A. V. Microalgae as a New Source of Bioactive Compounds in Food Supplements. Curr. Opin. Food Sci. 2016, 7, 73–77. DOI: 10.1016/j.cofs.2015.12.006.
  • Nicoletti, M. Microalgae Nutraceuticals. Foods 2016, 5, 54. DOI: 10.3390/foods5030054.
  • Azizi, S.; Bayat, B.; Tayebati, H.; Hashemi, A.; Pajoum Shariati, F. Pajoum Shariati F. Nitrate and Phosphate Removal from Treated Wastewater by Chlorella vulgaris under Various Light Regimes within Membrane Flat Plate Photobioreactor. Environ. Prog. Sustain. Energy 2021, 40, e13519. DOI: 10.1002/ep.13519.
  • Kumaresan, V.; Sannasimuthu, A.; Arasu, M. V.; Al-Dhabi, N. A.; Arockiaraj, J. Molecular Insight into the Metabolic Activities of a Protein-Rich Micro Alga, Arthrospira platensis by De Novo Transcriptome Analysis. Mol. Biol. Rep. 2018, 45, 829–838. DOI: 10.1007/s11033-018-4229-1.
  • da Fontoura Prates, D.; Radmann, E. M.; Duarte, J. H.; de Morais, M. G.; Costa, J. A. V. Spirulina Cultivated under Different Light Emitting Diodes: Enhanced Cell Growth and Phycocyanin Production. Bioresour. Technol. 2018, 256, 38–43. DOI: 10.1016/j.biortech.2018.01.122.
  • Wang, C.-Y.; Fu, C.-C.; Liu, Y.-C. Effects of Using Light-Emitting Diodes on the Cultivation of Spirulina platensis. Biochem. Eng. J. 2007, 37, 21–25. DOI: 10.1016/j.bej.2007.03.004.
  • Keramati, A.; Azizi, S.; Hashemi, A.; Pajoum Shariati, F. Effects of Flashing Light–Emitting Diodes (LEDs) on Membrane Fouling in a Reciprocal Membrane Photobioreactor (RMPBR) to Assess Nitrate and Phosphate Removal from Whey Wastewater. J. Appl. Phycol. 2021, 33, 1513–1524. DOI: 10.1007/s10811-021-02388-1.
  • Fromme, P. Photosynthetic Protein Complexes: A Structural Approach; Wiley-VCH; Weinheim, 2008.
  • Hashemi, S.; Pajoum Shariati, F.; Delavari Amrei, H.; Heydarinasab, A. Growth Pattern and β-Carotene Production of Dunaliella salina Cells in Different Salinities. J. Food Technol. Nutr. 2019, 16, 45–50.
  • Carle, R.; Schweiggert, R. Handbook on Natural Pigments in Food and Beverages: Industrial Applications for Improving Food Color; Elsevier Science & Technology, Cambridge, United Kingdom, 2016.
  • Larkum, A. W.; Grossman, A. R.; Raven, J. A. Photosynthesis in Algae: Biochemical and Physiological Mechanisms; Springer, Cham, Switzerland, 2020.
  • Porav, A. S.; Bocăneală, M.; Fălămaş, A.; Bogdan, D. F.; Barbu-Tudoran, L.; Hegeduş, A.; Dragoş, N. Sequential Aqueous Two-Phase System for Simultaneous Purification of Cyanobacterial Phycobiliproteins. Bioresour. Technol. 2020, 315, 123794. DOI: 10.1016/j.biortech.2020.123794.
  • Azizi, S.; Hashemi, A.; Pajoum Shariati, F.; Bonakdarpour, B.; Safamirzaei, M. Fouling Identification in Reciprocal Membrane Photobioreactor (RMPBR) Containing Chlorella vulgaris Species: Hydraulic Resistances Assessment. J. Chem. Technol. Biotechnol. 2021, 96, 404–411. DOI: 10.1002/jctb.6552.
  • Chaiklahan, R.; Chirasuwan, N.; Srinorasing, T.; Attasat, S.; Nopharatana, A.; Bunnag, B. Enhanced Biomass and Phycocyanin Production of Arthrospira (Spirulina) platensis by a Cultivation Management Strategy: Light Intensity and Cell Concentration. Bioresour. Technol. 2022, 343, 126077. DOI: 10.1016/j.biortech.2021.126077.
  • Vecchi, V.; Barera, S.; Bassi, R.; Dall’Osto, L. Potential and Challenges of Improving Photosynthesis in Algae. Plants 2020, 9, 67. DOI: 10.3390/plants9010067.
  • Vonshak, A.; Kancharaksa, N.; Bunnag, B.; Tanticharoen, M. Role of Light and Photosynthesis on the Acclimation Process of the Cyanobacterium Spirulina platensis to Salinity Stress. J. Appl. Phycol. 1996, 8, 119–124. DOI: 10.1007/BF02186314.
  • Richmond, A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Blackwell, UK, 2008.
  • Tian, F.; Buso, D.; Wang, T.; Lopes, M.; Niangoran, U.; Zissis, G. Effect of Red and Blue LEDs on the Production of Phycocyanin by Spirulina platensis Based on Photosynthetically Active Radiation. JSTL. 2018, 41, 148–152. DOI: 10.2150/jstl.IEIJ160000597.
  • Wardle, B. Principles and Applications of Photochemistry; John Wiley & Sons, UK, 2009.
  • Azizi, S.; Hashemi, A.; Pajoum Shariati, F.; Tayebati, H.; Keramati, A.; Bonakdarpour, B.; A. Shirazi, M. M. Effect of Different Light-Dark Cycles on the Membrane Fouling, EPS and SMP Production in a Novel Reciprocal Membrane Photobioreactor (RMPBR) by C. vulgaris Species. J. Water Process Eng. 2021, 43, 102256. DOI: 10.1016/j.jwpe.2021.102256.
  • Naveen, K.; Sharma, R.; Ashawani, K.; Stal, L. J.; Sharma, N. K. Cyanobacteria: An Economic Perspective; John Wiley & Sons, West Sussex, UK, 2014.
  • Edelmann, M.; Aalto, S.; Chamlagain, B.; Kariluoto, S.; Piironen, V. Riboflavin, Niacin, Folate and Vitamin B12 in Commercial Microalgae Powders. J. Food Compos. Anal. 2019, 82, 103226. DOI: 10.1016/j.jfca.2019.05.009.
  • Grossman, A. Nutrient Acquisition: The Generation of Bioactive Vitamin B12 by Microalgae. Curr. Biol. 2016, 26, R319–R321. DOI: 10.1016/j.cub.2016.02.047.
  • Helliwell, K. E. The Roles of B Vitamins in Phytoplankton Nutrition: New Perspectives and Prospects. New Phytol. 2017, 216, 62–68. DOI: 10.1111/nph.14669.
  • Chen, H.-B.; Wu, J.-Y.; Wang, C.-F.; Fu, C.-C.; Shieh, C.-J.; Chen, C.-I.; Wang, C.-Y.; Liu, Y.-C. Modeling on Chlorophyll a and Phycocyanin Production by Spirulina platensis under Various Light-Emitting Diodes. Biochem. Eng. J. 2010, 53, 52–56. DOI: 10.1016/j.bej.2010.09.004.
  • Yim, S.-K.; Ki, D.-W.; Doo, H.-S.; Kim, H.; Kwon, T.-H. Internally Illuminated Photobioreactor Using a Novel Type of Light-Emitting Diode (LED) Bar for Cultivation of Arthrospira platensis. Biotechnol. Bioproc. E 2016, 21, 767–776. DOI: 10.1007/s12257-016-0428-6.
  • Zarrouk, C. Contribution à l'étude cyanophycée: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Setch et Gardner Geitler); 1966.
  • Verma, R.; Kumari, K. K.; Srivastava, A.; Kumar, A. Photoautotrophic, Mixotrophic, and Heterotrophic Culture Media Optimization for Enhanced Microalgae Production. J. Environ. Chem. Eng. 2020, 8, 104149. DOI: 10.1016/j.jece.2020.104149.
  • Hosseini, M. K.; Shariati, F. P.; Hosseini, P. K.; Azizi, S.; Hashemi, A.; Eds. The Effect of Polymeric Granule as Mechanical Cleaning Technology on Membrane Fouling in a Hybrid Microalgal Membrane Photobioreactor (HMPBR). 6th MEMTEK International Symposium on Membrane Technologies and Applications; 2019.
  • Zuccaro, G. Y.; Pollio, A.; Steyer, J.-P. Chapter 2: Microalgae Cultivation Systems. In Microalgae Cultivation for Biofuels Production; Yousuf, A., Ed.; Elsevier; London, 2020; pp. 11–29.
  • Lee, S.-H.; Lee, J. E.; Kim, Y.; Lee, S.-Y. The Production of High Purity Phycocyanin by Spirulina Platensis Using Light-Emitting Diodes Based Two-Stage Cultivation. Appl. Biochem. Biotechnol. 2016, 178, 382–395. DOI: 10.1007/s12010-015-1879-5.
  • Ravelonandro, P. H.; Ratianarivo, D. H.; Joannis-Cassan, C.; Isambert, A.; Raherimandimby, M. Influence of Light Quality and Intensity in the Cultivation of Spirulina Platensis from Toliara (Madagascar) in a Closed System. J. Chem. Technol. Biotechnol. 2008, 83, 842–848. DOI: 10.1002/jctb.1878.
  • Bennett, A.; Bogorad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. J. Cell Biol. 1973, 58, 419–435. DOI: 10.1083/jcb.58.2.419.
  • İlter, I.; Akyıl, S.; Demirel, Z.; Koç, M.; Conk-Dalay, M.; Kaymak-Ertekin, F. Optimization of Phycocyanin Extraction from Spirulina platensis Using Different Techniques. J. Food Compos. Anal. 2018, 70, 78–88. DOI: 10.1016/j.jfca.2018.04.007.
  • Wang, F.; Liu, Y.-H.; Ma, Y.; Cui, Z.-G.; Shao, L.-L. Application of TMA-PEG to Promote C-Phycocyanin Extraction from S. platensis in the PEG ATPS. Process Biochem. 2017, 52, 283–294. DOI: 10.1016/j.procbio.2016.11.006.
  • Kumudha, A.; Kumar, S. S.; Thakur, M. S.; Ravishankar, G. A.; Sarada, R. Purification, Identification, and Characterization of Methylcobalamin from Spirulina platensis. J. Agric. Food Chem. 2010, 58, 9925–9930. DOI: 10.1021/jf102159j.
  • Watanabe, F.; Takenaka, S.; Katsura, H.; Miyamoto, E.; Abe, K.; Tamura, Y.; Nakatsuka, T.; Nakano, Y. Characterization of a Vitamin B12 Compound in the Edible Purple Laver, Porphyra yezoensis. Biosci. Biotechnol. Biochem. 2000, 64, 2712–2715. DOI: 10.1271/bbb.64.2712.
  • Gonçalves, A. L.; Simões, M.; Pires, J. C. M. The Effect of Light Supply on Microalgal Growth, CO2 Uptake and Nutrient Removal from Wastewater. Energy Convers. Manage. 2014, 85, 530–536. DOI: 10.1016/j.enconman.2014.05.085.
  • Theivandran, G.; Ibrahim, S. M.; Murugan, M. Fourier Transform Infrared (Ft-Ir) Spectroscopic Analysis of Spirulina fusiformis. J. Med. Plants Stud. 2015, 3, 30–32.
  • Stuart, B. H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons; Sussex, 2004.
  • Mistry, B. A Handbook of Spectroscopic Data. Chemistry, Jaipur, India, 2009, 600.
  • Hosseini, P. K.; Shariati, F. P.; Amrei, H. D.; Heydarinasab, A. The Influence of Various Orifice Diameters on Cake Resistance and Pore Blocking Resistance of a Hybrid Membrane Photobioreactor (HMPBR). Sep. Purif. Technol. 2020, 235, 116187. DOI: 10.1016/j.seppur.2019.116187.
  • Alberts, B.; Bray, D.; Hopkin, K.; Johnson, A. D.; Lewis, J.; Raff, M. Essential Cell Biology; Garland Science, New York & Abingdon, 2015.
  • Urry, L. A.; Cain, M. L.; Wasserman, S. A.; Minorsky, P. V.; Reece, J. B. Campbell Biology; Pearson Education, Incorporated, New York, 2017.
  • Wang, Q. Microbial Photosynthesis; Springer, Singapore, 2020.
  • Whitton, R.; Ometto, F.; Villa, R.; Pidou, M.; Jefferson, B. Influence of Light Regime on the Performance of an Immobilised Microalgae Reactor for Wastewater Nutrient Removal. Algal Res. 2019, 44, 101648. DOI: 10.1016/j.algal.2019.101648.
  • Schulze, P. S.; Barreira, L. A.; Pereira, H. G.; Perales, J. A.; Varela, J. C. Light Emitting Diodes (LEDs) Applied to Microalgal Production. Trends Biotechnol. 2014, 32, 422–430. DOI: 10.1016/j.tibtech.2014.06.001.
  • Detweiler, A. M.; Mioni, C. E.; Hellier, K. L.; Allen, J. J.; Carter, S. A.; Bebout, B. M.; Fleming, E. E.; Corrado, C.; Prufert-Bebout, L. E. Evaluation of Wavelength Selective Photovoltaic Panels on Microalgae Growth and Photosynthetic Efficiency. Algal Res. 2015, 9, 170–177. DOI: 10.1016/j.algal.2015.03.003.
  • Akimoto, S.; Yokono, M.; Hamada, F.; Teshigahara, A.; Aikawa, S.; Kondo, A. Adaptation of Light-Harvesting Systems of Arthrospira platensis to Light Conditions, Probed by Time-Resolved Fluorescence Spectroscopy. Biochim. Biophys. Acta 2012, 1817, 1483–1489. DOI: 10.1016/j.bbabio.2012.01.006.
  • Noreña-Caro, D.; Benton, M. G. Cyanobacteria as Photoautotrophic Biofactories of High-Value Chemicals. J. CO2 Util. 2018, 28, 335–366. DOI: 10.1016/j.jcou.2018.10.008.
  • Lauceri, R.; Bresciani, M.; Lami, A.; Morabito, G. Chlorophyll a Interference in Phycocyanin and Allophycocyanin Spectrophotometric Quantification. J. Limnol. 2017, 77, 169–177. DOI: 10.4081/jlimnol.2017.1691.
  • Manirafasha, E.; Ndikubwimana, T.; Zeng, X.; Lu, Y.; Jing, K. Phycobiliprotein: Potential Microalgae Derived Pharmaceutical and Biological Reagent. Biochem. Eng. J. 2016, 109, 282–296. DOI: 10.1016/j.bej.2016.01.025.
  • Raven, J. A.; Beardall, J.; Slocombe, S.; Benemann, J. Algal Photosynthesis and Physiology. Microalgal Production for Biomass and High Value Products; CRC Press; Taylor and Francis Group: Boca Raton, FL, 2016; pp. 1–19.
  • Watanabe, F.; Takenaka, S.; Katsura, H.; Masumder, S. A.; Abe, K.; Tamura, Y.; Nakano, Y. Dried Green and Purple Lavers (Nori) Contain Substantial Amounts of Biologically Active Vitamin B12 but Less of Dietary Iodine Relative to Other Edible Seaweeds. J. Agric. Food Chem. 1999, 47, 2341–2343. DOI: 10.1021/jf981065c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.