161
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Biorefining process of agricultural onions to functional vinegar

, , , , & ORCID Icon

References

  • Mas, A.; Torija, M. J.; García-Parrilla, M. C.; Troncoso, A. M. Acetic Acid Bacteria and the Production and Quality of Wine Vinegar. ScientificWorldJournal 2014, 2014, 394671. DOI: 10.1155/2014/394671.
  • Xie, S. K.; Zhao, C. M.; Fan, B. Q.; Zheng, Y.; Xia, M. L.; Tu, L. N.; Song, J.; Zhao, X. Y.; Wang, M. Metabolic Network of Ammonium in Cereal Vinegar Solid-State Fermentation and Its Response to Acid Stress. Food Microbiol. 2021, 95, 103684. DOI: 10.1016/j.fm.2020.103684.
  • Gong, M.; Zhou, Z. L.; Liu, S. P.; Zhu, S. H.; Li, G. Q.; Zhong, F.; Mao, J. Formation Pathways and Precursors of Furfural during Zhenjiang Aromatic Vinegar Production. Food Chem. 2021, 354, 129503. DOI: 10.1016/j.foodchem.2021.129503.
  • Huang, R. T.; Huang, Q.; Wu, G. L.; Chen, C. G.; Li, Z. J. Evaluation of the Antioxidant Property and Effects in Caenorhabditis elegans of Xiangxi Flavor Vinegar, a Hunan Local Traditional Vinegar. J. Zhejiang Univ. Sci. B 2017, 18, 324–333. DOI: 10.1631/jzus.B1600088.
  • Tesfaye, W.; Morales, M. L.; García-Parrilla, M. C.; Troncoso, A. M. Wine Vinegar: Technology, Authenticity and Quality Evaluation. Trends Food Sci. Technol. 2002, 13, 12–21. DOI: 10.1016/S0924-2244(02)00023-7.
  • Román-Camacho, J. J.; Mauricio, J. C.; Santos-Dueñas, I. M.; García-Martínez, T.; García-García, I. Functional Metaproteomic Analysis of Alcohol Vinegar Microbiota during an Acetification Process: A Quantitative Proteomic Approach. Food Microbiol. 2021, 98, 103799. DOI: 10.1016/j.fm.2021.103799.
  • Luzón-Quintana, L. M.; Castro, R.; Durán-Guerrero, E. Biotechnological Processes in Fruit Vinegar Production. Foods 2021, 10, 945. DOI: 10.3390/foods10050945.
  • Lim, J. M.; Lee, S. H.; Jeong, D. Y.; Jo, S. W.; Kamala-Kannan, S.; Oh, B. T. Significance of LED Lights in Enhancing the Production of Vinegar Using Acetobacter pasteurianus AP01. Prep. Biochem. Biotechnol. 2022, 52, 38–47. DOI: 10.1080/10826068.2021.1907406.
  • Yakushi, T.; Matsushita, K. Alcohol Dehydrogenase of Acetic Acid Bacteria: Structure, Mode of Action, and Applications in Biotechnology. Appl. Microbiol. Biotechnol. 2010, 86, 1257–1265. DOI: 10.1007/s00253-010-2529-z.
  • Chen, Y.; Gao, B.; Wang, C.; Li, D. S.; Xu, N.; Hu, Y. Study on the Key Enzymes of Acetic Acid Production from Acetobacter pasteurianus as 1.41. China Brewing. 2016, 35, 38–42. DOI: 10.11882/j.issn.0254-5071.2016.01.009.
  • Lee, S.; Lee, J. A.; Park, G. G.; Jang, J. K.; Park, Y. S. Semi-Continuous Fermentation of Onion Vinegar and Its Functional Properties. Molecules 2017, 22, 1313. DOI: 10.3390/molecules22081313.
  • Kim, H. M.; Choi, I. S.; Lee, S.; Yang, J. E.; Jeong, S.-G.; Park, J. H.; Ko, S. H.; Hwang, I. M.; Chun, H. H.; Wi, S. G.; et al. Biorefining Process of Carbohydrate Feedstock (Agricultural Onion Waste) to Acetic Acid. ACS Omega 2019, 4, 22438–22444. DOI: 10.1021/acsomega.9b03093.
  • Arshad, M. S.; Sohaib, M.; Nadeem, M.; Saeed, F.; Imran, A.; Javed, A.; Amjad, Z.; Batool, S. M. Status and Trends of Nutraceuticals from Onion and Onion by-Products: A Critical Review. Congent. Food Agric. 2017, 3, 1280254. DOI: 10.1080/23311932.2017.1280254.
  • Choi, I. S.; Cho, E. J.; Moon, J. H.; Bae, H. J. Onion Skin Waste as a Valorization Resource for the by-Products Quercetin and Biosugar. Food Chem. 2015, 188, 537–542. DOI: 10.1016/j.foodchem.2015.05.028.
  • Kumari, K.; Augusti, K. T. Antidiabetic Effects of S-Methylcysteine Sulphoxide on Alloxan Diabetes. Planta Med. 1995, 61, 72–74. DOI: 10.1055/s-2006-958004.
  • Griffiths, G.; Trueman, L.; Crowther, T.; Thomas, B.; Smith, B. Onions—A Global Benefit to Health. Phytother. Res. 2002, 16, 603–615. DOI: 10.1002/ptr.1222.
  • González-Sáiz, J. M.; Pizarro, C.; Esteban-Díez, I.; Ramírez, O.; González-Navarro, C. J.; Sáiz-Abajo, M. J.; Itoiz, R. Monitoring of Alcoholic Fermentation of Onion Juice by NIR Spectroscopy: Valorization of Worthless Onions. J. Agric. Food Chem. 2007, 55, 2930–2936. DOI: 10.1021/jf0634101.
  • Bommareddy, A.; VanWert, A. L.; McCune, D. F.; Brozena, S. L.; Witczak, Z.; Singh, S. V. The Role of Organosulfur Compounds Derived from Allium Vegetables in Cancer Prevention and Therapy. In Critical Dietary Factors in Cancer Chemoprevention; Ullah, M., Ahmad, A., Eds.; Springer: Cham, 2016; pp. 111–152. DOI: 10.1007/978-3-319-21461-0_6.
  • Liu, S. N.; Han, Y.; Zhou, Z. J. Lactic Acid Bacteria in Traditional Fermented Chinese Foods. Food Res. Int. 2011, 44, 643–651. DOI: 10.1016/j.foodres.2010.12.034.
  • Abdel-Fattah, A. F.; Abdel-Fattah, A. Z. A.; Farid, M. A. Production of Ethyl Alcohol by Saccharomyces cerevisiae, Including Utilization of Onion Juice. Agric. Wastes 1984, 9, 101–110. DOI: 10.1016/0141-4607(84)90066-0.
  • Horiuchi, J. I.; Yamauchi, N.; Osugi, M.; Kanno, T.; Kobayashi, M.; Kuriyama, H. Onion Alcohol Production by Repeated Batch Process Using a Flocculating Yeast. Bioresour. Technol. 2000, 75, 153–156. DOI: 10.1016/S0960-8524(00)00044-4.
  • Lee, S.; Jang, J. K.; Park, Y. S. Fed-Batch Fermentation of Onion Vinegar Using Acetobacter tropicalis. Food Sci. Biotechnol. 2016, 25, 1407–1411. DOI: 10.1007/s10068-016-0219-z.
  • Jeong, E. J.; Park, H. J.; Cha, Y. J. Fermented Production of Onion Vinegar and Its Biological Activities. Korean J. Food Nutr. 2016, 29, 962–970. DOI: 10.9799/ksfan.2016.29.6.962.
  • Choi, Y. J.; Cheigh, C. I.; Kim, S. W.; Jang, J. K.; Choi, Y. J.; Park, Y. S.; Shim, K. S. Selection of Starter Cultures and Optimum Conditions for Lactic Acid Fermentation of Onion. Food Sci. Biotechnol. 2009, 18, 1100–1108.
  • Hilbig, J.; Hildebrandt, L.; Herrmann, K.; Weiss, J.; Loeffler, M. Influence of Homopolysaccharide-Producing Lactic Acid Bacteria on the Spreadability of Raw Fermented Sausages (Onion Mettwurst). J. Food Sci. 2020, 85, 289–297. DOI: 10.1111/1750-3841.15010.
  • Kimoto-Nira, H.; Ohashi, Y.; Amamiya, M.; Moriya, N.; Ohmori, H.; Sekiyama, Y. Fermentation of Onion (Allium cepa L.) Peel by Lactic Acid Bacteria for Production of Functional Food. Food Meas. 2020, 14, 142–149. DOI: 10.1007/s11694-019-00276-4.
  • Xu, D. L.; Lin, Q. L.; Wu, W.; Wu, Y. X.; Liang, Y. Revealing the Antiaging Effects of Cereal- and Food Oil-Derived Active Substances by a Caenorhabditis elegans Model. Food Funct. 2021, 12, 3296–3306. DOI: 10.1039/D0FO02240C.
  • Qi, Z. L.; Yang, H. L.; Xia, X. Y.; Xin, Y.; Zhang, L.; Wang, W.; Yu, X. B. A Protocol for Optimization Vinegar Fermentation According to the Ratio of Oxygen Consumption versus Acid Yield. J. Food Eng. 2013, 116, 304–309. DOI: 10.1016/j.jfoodeng.2012.12.029.
  • Tang, X.; Zhai, J. M.; Ge, X. F. Comparative Study on Antioxidant Active Components of Three Natural Plants for Food Packaging. Sci. Technol. Food Ind. 2021, 42, 86–92. DOI: 10.13386/j.issn1002-0306.2020110284.
  • Thuengtung, S.; Ogawa, Y. Comparative Study of Conventional Steam Cooking and Microwave Cooking on Cooked Pigmented Rice Texture and Their Phenolic Antioxidant. Food Sci. Nutr. 2020, 8, 965–972. DOI: 10.1002/fsn3.1377.
  • Zhao, B.; Xiao, R. Q.; Xiao, Z. J.; Li, G. R.; Yun, W.; Li, H.; Zhu, Y. H. Determination of Seventeen Amino Acids in Vinegar by High Performance Liquid Chromatography with Pre-Column Derivation. China Condiment. 2013, 38, 96–98. DOI: 10.3969/j.issn.1000-9973.2013.09.024.
  • Boonsupa, W. Chemical Properties, Antioxidant Activities and Sensory Evaluation of Berry Vinegar. Walailak J. Sci. Tech. 2018, 16, 887–896. DOI: 10.48048/wjst.2019.4562.
  • Fonseca, M. S.; Santos, V. A. Q.; Calegari, G. C.; Dekker, R. F. H.; Barbosa-Dekker, A. M.; Da Cunha, M. A. A. Blueberry and Honey Vinegar: Successive Batch Production, Antioxidation Potential and Antimicrobial Ability. Braz. J. Food Technol. 2018, 21, e2017101. DOI: 10.1590/1981-6723.10117.
  • Yan, H. G.; Zhan, W. H.; Chen, J. H.; Ding, Z. E. Optimization of the Alcoholic Fermentation of Blueberry Juice by as 2.316 Saccharomyces cerevisiae Wine Yeast. Afr. J. Biotechnol. 2012, 11, 3623–3630. DOI: 10.5897/AJB11.3635.
  • Kiefler, I.; Bringer, S.; Bott, M. Metabolic Engineering of Gluconobacter oxydans 621H for Increased Biomass Yield. Appl. Microbiol. Biotechnol. 2017, 101, 5453–5467. DOI: 10.1007/s00253-017-8308-3.
  • Xia, K.; Han, C. C.; Xu, J.; Liang, X. L. Transcriptome Response of Acetobacter pasteurianus Ab3 to High Acetic Acid Stress during Vinegar Production. Appl. Microbiol. Biotechnol. 2020, 104, 10585–10599. DOI: 10.1007/s00253-020-10995-0.
  • de Ory, I.; Romero, L. E.; Cantero, D. Operation in Semi-Continuous with a Closed Pilot Plant Scale Acetifier for Vinegar Production. J. Food Eng. 2004, 63, 39–45. DOI: 10.1016/S0260-8774(03)00280-2.
  • Saeki, A. Application of Gluconobacter oxydans subsp. sphaericus IFO12467 to Vinegar Production. J. Ferment. Bioeng. 1993, 75, 232–234. DOI: 10.1016/0922-338X(93)90124-Q.
  • Qi, Z. L.; Yang, H. L.; Xia, X. L.; Quan, W.; Wang, W.; Yu, X. B. Achieving High Strength Vinegar Fermentation via Regulating Cellular Growth Status and Aeration Strategy. Process Biochem. 2014, 49, 1063–1070. DOI: 10.1016/j.procbio.2014.03.018.
  • Kudron, M. M.; Victorsen, A.; Gevirtzman, L.; Hillier, L. W.; Fisher, W. W.; Vafeados, D.; Kirkey, M.; Hammonds, A. S.; Gersch, J.; Ammouri, H.; et al. The ModERN Resource: Genome-Wide Binding Profiles for Hundreds of Drosophila and Caenorhabditis elegans Transcription Factors. Genetics 2018, 208, 937–949. DOI: 10.1534/genetics.117.300657.
  • Na, H. S.; Choi, G. C.; Yang, S. I.; Lee, J. H.; Cho, J. Y.; Ma, S. J.; Kim, J. Y. Comparison of Characteristics in Commercial Fermented Vinegar Made with Different Ingredients. Korean J. Food Preserv. 2013, 20, 482–487. DOI: 10.11002/kjfp.2013.20.4.482.
  • Wu, Y. N.; Li, L. J.; Liu, X. J.; Zhang, X. L.; Wang, J.; Zhang, R. Z.; Wang, M.; Zheng, Y. Review of the Composition of Organic Acids in Traditional Vinegar and Analysis of Their Flavor Characteristics. China Condiment. 2021, 46, 161–165. DOI: 10.3969/j.issn.1000-9973.2021.01.033.
  • Tesfaye, W.; Morales, M. L.; García-Parrilla, M. C.; Troncoso, A. M. Improvement of Wine Vinegar Elaboration and Quality Analysis: Instrumental and Human Sensory Evaluation. Food Revs. Int. 2009, 25, 142–156. DOI: 10.1080/87559120802682748.
  • Marrufo-Curtido, A.; Cejudo-Bastante, M. J.; Rodríguez-Dodero, M. C.; Natera-Marín, R.; Castro-Mejías, R.; García-Barroso, C.; Durán-Guerrero, E. Novel Vinegar-Derived Product Enriched with Dietary Fiber: Effect on Polyphenolic Profile, Volatile Composition and Sensory Analysis. J. Food Sci. Technol. 2015, 52, 7608–7624. DOI: 10.1007/s13197-015-1908-y.
  • Cardello, A. V. Hedonic Scaling: Assumption, Contexts and Frames of Reference. Curr. Opin. Food Sci. 2017, 15, 14–21. DOI: 10.1016/j.cofs.2017.05.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.