146
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A sustainable process for co-production of xylooligosaccharides and ethanol from alkali treated sugarcane bagasse: A strategy towards waste management

, &

References

  • Jugwanth, Y.; Sewsynker-Sukai, Y.; Kana, E. B. G. Valorization of Sugarcane Bagasse for Bioethanol Production through Simultaneous Saccharification and Fermentation: Optimization and Kinetic Studies. Fuel. 2020, 262, 116552. DOI: 10.1016/j.fuel.2019.116552.
  • Schmitt, C. C.; Moreira, R.; Neves, R. C.; Richter, D.; Funke, A.; Raffelt, K.; Grunwaldt, J.-D.; Dahmen, N. From Agriculture Residue to Upgraded Product: The Thermochemical Conversion of Sugarcane Bagasse for Fuel and Chemical Products. Fuel. Process. Technol. 2020, 197, 106199. DOI: 10.1016/j.fuproc.2019.106199.
  • Kumar, A.; Kumar, V.; Singh, B. Cellulosic and Hemicellulosic Fractions of Sugarcane Bagasse: Potential, Challenges and Future Perspective. Int. J. Biol. Macromol. 2021, 169, 564–582.
  • Taherzadeh, M. J.; Karimi, K. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. Int. J. Mol. Sci. 2008, 9, 1621–1651. DOI: 10.3390/ijms9091621.
  • Bu, J.; Wang, Y.-T.; Deng, M.-C.; Zhu, M.-J. Enhanced Enzymatic Hydrolysis and Hydrogen Production of Sugarcane Bagasse Pretreated by Peroxyformic Acid. Bioresour. Technol. 2021, 326, 124751.
  • Bu, J.; Yan, X.; Wang, Y.-T.; Zhu, S.-M.; Zhu, M.-J. Co-Production of High-Gravity Bioethanol and Succinic Acid from Potassium Peroxymonosulfate and Deacetylation Sequentially Pretreated Sugarcane Bagasse by Simultaneous Saccharification and Co-Fermentation. Energy Convers. Manage. 2019, 186, 131–139. DOI: 10.1016/j.enconman.2019.02.038.
  • Chen, S.-J.; Chen, X.; Zhu, M.-J. Xylose Recovery and Bioethanol Production from Sugarcane Bagasse Pretreated by Mild Two-Stage Ultrasonic Assisted Dilute Acid. Bioresour. Technol. 2022, 345, 126463.
  • Zhao, S.; Zhang, G.-L.; Chen, C.; Yang, Q.; Luo, X.-M.; Wang, Z.-B.; Wu, A.-M.; Feng, J.-X. A Combination of Mild Chemical Pre-Treatment and Enzymatic Hydrolysis Efficiently Produces Xylooligosaccharides from Sugarcane Bagasse. J. Clean. Prod. 2021, 291, 125972. DOI: 10.1016/j.jclepro.2021.125972.
  • Samanta, A. K.; Jayapal, N.; Jayaram, C.; Roy, S.; Kolte, A. P.; Senani, S.; Sridhar, M. Xylooligosaccharides as Prebiotics from Agricultural by-Products: Production and Applications. Bioact. Carbohydr. Diet. Fibre. 2015, 5, 62–71. DOI: 10.1016/j.bcdf.2014.12.003.
  • Carvalho, A. F. A.; de Oliva Neto, P.; Da Silva, D. F.; Pastore, G. M. Xylo-Oligosaccharides from Lignocellulosic Materials: Chemical Structure, Health Benefits and Production by Chemical and Enzymatic Hydrolysis. Food Res. Int. 2013, 51, 75–85. DOI: 10.1016/j.foodres.2012.11.021.
  • Jagtap, S.; Deshmukh, R. A.; Menon, S.; Das, S. Xylooligosaccharides Production by Crude Microbial Enzymes from Agricultural Waste without Prior Treatment and Their Potential Application as Nutraceuticals. Bioresour. Technol. 2017, 245, 283–288.
  • Chen, X.; Li, H.; Sun, S.; Cao, X.; Sun, R. Co-Production of Oligosaccharides and Fermentable Sugar from Wheat Straw by Hydrothermal Pretreatment Combined with Alkaline Ethanol Extraction. Ind. Crops Prod. 2018, 111, 78–85. DOI: 10.1016/j.indcrop.2017.10.014.
  • Xue, J.-L.; Zhao, S.; Liang, R.-M.; Yin, X.; Jiang, S.-X.; Su, L.-H.; Yang, Q.; Duan, C.-J.; Liu, J.-L.; Feng, J.-X. A Biotechnological Process Efficiently Co-Produces Two High Value-Added Products, Glucose and Xylooligosaccharides, from Sugarcane Bagasse. Bioresour. Technol. 2016, 204, 130–138.
  • Singh, R. D.; Banerjee, J.; Sasmal, S.; Muir, J.; Arora, A. High Xylan Recovery Using Two Stage Alkali Pre-Treatment Process from High Lignin Biomass and Its Valorisation to Xylooligosaccharides of Low Degree of Polymerisation. Bioresour. Technol. 2018, 256, 110–117.
  • Pablo, G.; Gullón, B.; Wu, J.; Saddler, J.; Garrote, G.; Romaní, A. Current Breakthroughs in the Hardwood Biorefineries: Hydrothermal Processing for the Co-Production of Xylooligosaccharides and Bioethanol. Bioresour. Technol. 2022, 343, 126100.
  • de Figueiredo, F. C.; Carvalho, A. F. A.; Brienzo, M.; Campioni, T. S.; de Oliva-Neto, P. Chemical Input Reduction in the Arabinoxylan and Lignocellulose Alkaline Extraction and Xylooligosaccharides Production. Bioresour. Technol. 2017, 228, 164–170.
  • Jnawali, P.; Kumar, V.; Tanwar, B.; Hirdyani, H.; Gupta, P. Enzymatic Production of Xylooligosaccharides from Brown Coconut Husk Treated with Sodium Hydroxide. Waste Biomass. Valor. 2018, 9, 1757–1766. DOI: 10.1007/s12649-017-9963-4.
  • Otieno, D. O.; Ahring, B. K. A Thermochemical Pretreatment Process to Produce Xylooligosaccharides (XOS), Arabinooligosaccharides (AOS) and Mannooligosaccharides (MOS) from Lignocellulosic Biomasses. Bioresour. Technol. 2012, 112, 285–292.
  • Manzanares, P. The Role of Biorefinering Research in the Development of a Modern Bioeconomy. Acta Innov. 2020, 37, 47–56. DOI: 10.32933/Actalnnovations.37.4
  • Patel, A.; Shah, A. R. Integrated Lignocellulosic Biorefinery: Gateway for Production of Second Generation Ethanol and Value Added Products. J. Bioresour. Bioprod. 2021, 6, 108–128. DOI: 10.1016/j.jobab.2021.02.001.
  • Devi, A.; Bajar, S.; Kour, H.; Kothari, R.; Pant, D.; Singh, A. Lignocellulosic Biomass Valorization for Bioethanol Production: A Circular Bioeconomy Approach. Bioenergy Res. 2022, 1–22. DOI: 10.1007/s12155-022-10401-9.
  • Nascimento, V. M.; Manrich, A.; Tardioli, P. W.; de Campos Giordano, R.; de Moraes Rocha, G. J.; Giordano, RdL Alkaline Pretreatment for Practicable Production of Ethanol and Xylooligosaccharides. Bioethanol. 2016, 2, 1. DOI: 10.1515/bioeth-2016-0008.
  • Nasution, M. H.; Lelinasari, S.; Kelana M. G. S., A Review of Sugarcane Bagasse Pretreatment for Bioethanol Production. In IOP Conference Series: Earth and Environmental Science; Indonesia: IOP Publishing, 2022; Vol. 963; pp. 12014.
  • Khaleghipour, L.; Linares-Pastén, J. A.; Rashedi, H.; Ranaei Siadat, S. O.; Jasilionis, A.; Al-Hamimi, S.; Sardari, R. R. R.; Karlsson, E. N. Extraction of Sugarcane Bagasse Arabinoxylan, Integrated with Enzymatic Production of Xylo-Oligosaccharides and Separation of Cellulose. Biotechnol. Biofuels. 2021, 14, 1–19.
  • Wu, M.; Gong, L.; Ma, C.; He, Y.-C. Enhanced Enzymatic Saccharification of Sorghum Straw by Effective Delignification via Combined Pretreatment with Alkali Extraction and Deep Eutectic Solvent Soaking. Bioresour. Technol. 2021, 340, 125695.
  • Patel, A.; Patel, H.; Divecha, J.; Shah, A. R. Enhanced Production of Ethanol from Enzymatic Hydrolysate of Microwave-Treated Wheat Straw by Statistical Optimization and Mass Balance Analysis of Bioconversion Process. Biofuels. 2021, 12, 1251–1258. DOI: 10.1080/17597269.2019.1608037.
  • Gao, Y.; Xu, J.; Yuan, Z.; Jiang, J.; Zhang, Z.; Li, C. Ethanol Production from Sugarcane Bagasse by Fed‐Batch Simultaneous Saccharification and Fermentation at High Solids Loading. Energy Sci. Eng. 2018, 6, 810–818. DOI: 10.1002/ese3.257.
  • Sun, F. F.; Zhao, X.; Hong, J.; Tang, Y.; Wang, L.; Sun, H.; Li, X.; Hu, J. Industrially Relevant Hydrolyzability and Fermentability of Sugarcane Bagasse Improved Effectively by Glycerol Organosolv Pretreatment. Biotechnol. Biofuels. 2016, 9, 59.
  • Yu, N.; Tan, L.; Sun, Z.-Y.; Nishimura, H.; Takei, S.; Tang, Y.-Q.; Kida, K. Bioethanol from Sugarcane Bagasse: Focused on Optimum of Lignin Content and Reduction of Enzyme Addition. Waste Manage. 2018, 76, 404–413.
  • Chapla, D.; Divecha, J.; Madamwar, D.; Shah, A. Utilization of Agro-Industrial Waste for Xylanase Production by Aspergillus foetidus MTCC 4898 under Solid State Fermentation and Its Application in Saccharification. Biochem. Eng. J. 2010, 49, 361–369. DOI: 10.1016/j.bej.2010.01.012.
  • Chapla, D.; Dholakiya, S.; Madamwar, D.; Shah, A. Characterization of Purified Fungal Endoxylanase and Its Application for Production of Value Added Food Ingredient from Agroresidues. Food Bioprod. Process. 2013, 91, 682–692. DOI: 10.1016/j.fbp.2013.08.005.
  • Patel, H.; Divecha, J.; Shah, A. Microwave Assisted Alkali Treated Wheat Straw as a Substrate for Co-Production of (Hemi)Cellulolytic Enzymes and Development of Balanced Enzyme Cocktail for Its Enhanced Saccharification. J. Taiwan Inst. Chem. Eng. 2017.
  • Jayapal, N.; Samanta, A. K.; Kolte, A. P.; Senani, S.; Sridhar, M.; Suresh, K. P.; Sampath, K. T. Value Addition to Sugarcane Bagasse: Xylan Extraction and Its Process Optimization for Xylooligosaccharides Production. Ind. Crops Prod. 2013, 42, 14–24. DOI: 10.1016/j.indcrop.2012.05.019.
  • Georing, H. K.; van Soest, P. J. Forage FIbre Analysis (Apparatus, Reagent, Procedure and Some Application US Department of Agriculture. Hand. B. 1970.
  • Myers, R. H.; Montgomery, D. C.; Anderson-Cook, C. M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons, 2016.
  • Patel, A.; Patel, H.; Shah, A. Production of Cellulosic Ethanol from Alkali-Treated Wheat Straw Using P-SSF Process and Bioconversion of Hemicellulosic Fraction into High-Value Products. CBIOT 2021, 10, 122–132. DOI: 10.2174/2211550110666210825095338.
  • Patel, H.; Divecha, J.; Shah, A. Optimization of Ethanol Production from Enzymatic Hydrolysate of Maize Stover. Adv. Recycl. Waste Manage. 2016, 1, 2475–7675.
  • Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. DOI: 10.1021/ac60147a030.
  • Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. T.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. DOI: 10.1021/ac60111a017.
  • Zheng, Q.; Zhou, T.; Wang, Y.; Cao, X.; Wu, S.; Zhao, M.; Wang, H.; Xu, M.; Zheng, B.; Zheng, J.; Guan, X. Pretreatment of Wheat Straw Leads to Structural Changes and Improved Enzymatic Hydrolysis. Sci. Rep. 2018, 8, 1321.
  • Dowe, N.; McMillan, J. SSF Experimental Protocols: Lignocellulosic Biomass Hydrolysis and Fermentation. Natl. Renew. Energy Lab. Anal. Proceed. 2001.
  • Xu, J.-K.; Sun, R.-C. Recent Advances in Alkaline Pretreatment of Lignocellulosic Biomass. Biomass Fractionat. Technol. 2016, 431–459.
  • Mota, T. R.; Oliveira, D. M.; Simister, R.; Whitehead, C.; Lanot, A.; Dos Santos, W. D.; Rezende, C. A.; McQueen-Mason, S. J.; Gomez, L. D. Design of Experiments Driven Optimization of Alkaline Pretreatment and Saccharification for Sugarcane Bagasse. Bioresour. Technol. 2021, 321, 124499. DOI: 10.1016/j.biortech.2020.124499.
  • Solier, Y. N.; Mocchiutti, P.; Cabrera, M. N.; Saparrat, M. C. N.; Zanuttini, M. Á.; Inalbon, M. C. Alkali-Peroxide Treatment of Sugar Cane Bagasse. Effect of Chemical Charges on the Efficiency of Xylan Isolation and Susceptibility of Bagasse to Saccharification. Biomass. Convers. Biorefinery. 2020, 12, 1–10.
  • Chapla, D.; Pandit, P.; Shah, A. Production of Xylooligosaccharides from Corncob Xylan by Fungal Xylanase and Their Utilization by Probiotics. Bioresour. Technol. 2012, 115, 215–221.
  • Kim, J. S.; Lee, Y. Y.; Kim, T. H. A Review on Alkaline Pretreatment Technology for Bioconversion of Lignocellulosic Biomass. Bioresour. Technol. 2016, 199, 42–48.
  • Montgomery, D. C. Experiments with a Single Factor: The Analysis of Variance. Des. Anal. Exp. 1991, 7, 87–89.
  • Brienzo, M.; Carvalho, W.; Milagres, A. M. F. Xylooligosaccharides Production from Alkali-Pretreated Sugarcane Bagasse Using Xylanases from Thermoascus Aurantiacus. Appl. Biochem. Biotechnol. 2010, 162, 1195–1205.
  • Bragatto, J.; Segato, F.; Squina, F. M. Production of Xylooligosaccharides (XOS) from Delignified Sugarcane Bagasse by Peroxide-HAc Process Using Recombinant Xylanase from Bacillus subtilis. Ind. Crops Prod. 2013, 51, 123–129. DOI: 10.1016/j.indcrop.2013.08.062.
  • Bian, J.; Peng, F.; Peng, X.-P.; Peng, P.; Xu, F.; Sun, R.-C. Structural Features and Antioxidant Activity of Xylooligosaccharides Enzymatically Produced from Sugarcane Bagasse. Bioresour. Technol. 2013, 127, 236–241.
  • Carvalho, A. A. F.; de Oliva Neto P.; Zaghetto de Almeida P.; Bueno da Silva, J.; Escaramboni, B.; Pastore, G. M. Screening of Xylanolytic Aspergillus fumigatus for Prebiotic Xylooligosaccharide Production Using Bagasse. Food Technol. Biotechnol. 2015, 53, 428–435.
  • Hoyer, K.; Galbe, M.; Zacchi, G. Effects of Enzyme Feeding Strategy on Ethanol Yield in Fed-Batch Simultaneous Saccharification and Fermentation of Spruce at High Dry Matter. Biotechnol. Biofuels. 2010, 3, 1–11.
  • Lu, J.; Li, X.; Yang, R.; Yang, L.; Zhao, J.; Liu, Y.; Qu, Y. Fed-Batch Semi-Simultaneous Saccharification and Fermentation of Reed Pretreated with Liquid Hot Water for Bio-Ethanol Production Using Saccharomyces. cerevisiae. Bioresour. Technol. 2013, 144, 539–547.
  • Neves, P. V.; Pitarelo, A. P.; Ramos, L. P. Production of Cellulosic Ethanol from Sugarcane Bagasse by Steam Explosion: Effect of Extractives Content, Acid Catalysis and Different Fermentation Technologies. Bioresour. Technol. 2016, 208, 184–194.
  • You, Y.; Li, P.; Lei, F.; Xing, Y.; Jiang, J. Enhancement of Ethanol Production from Green Liquor–Ethanol-Pretreated Sugarcane Bagasse by Glucose–Xylose Cofermentation at High Solid Loadings with Mixed Saccharomyces cerevisiae Strains. Biotechnol. Biofuels. 2017, 10, 92.
  • Li, J.; Zhou, P.; Liu, H.; Wu, K.; Xiao, W.; Gong, Y.; Lin, J.; Liu, Z. Ethanol Production from Xylan-Removed Sugarcane Bagasse Using Low Loading of Commercial Cellulase. Bioresour. Technol. 2014, 163, 390–394.
  • Gao, Y.; Xu, J.; Yuan, Z.; Zhang, Y.; Liang, C.; Liu, Y. Ethanol Production from High Solids Loading of Alkali-Pretreated Sugarcane Bagasse with an SSF Process. BioResources. 2014, 9, 3466–3479. DOI: 10.15376/biores.9.2.3466-3479.
  • Zhang, T.; Zhu, M.-J. Enhanced Bioethanol Production by Fed-Batch Simultaneous Saccharification and Co-Fermentation at High Solid Loading of Fenton Reaction and Sodium Hydroxide Sequentially Pretreated Sugarcane Bagasse. Bioresour. Technol. 2017, 229, 204–210.
  • Unrean, P.; Ketsub, N. Integrated Lignocellulosic Bioprocess for Co-Production of Ethanol and Xylitol from Sugarcane Bagasse. Ind. Crops Prod. 2018, 123, 238–246. DOI: 10.1016/j.indcrop.2018.06.071.
  • Liu, Y.; Xu, J. X.; Zhang, Y.; He, M.; Liang, C.; Yuan, Z.; Xie, J. Improved Ethanol Production Based on High Solids Fed-Batch Simultaneous Saccharification and Fermentation with Alkali-Pretreated Sugarcane Bagasse. BioResources. 2016, 11, 2548–2556.
  • Sa, N. D. Comparison of Ethanol Yield between Separate and Simultaneous Hydrolysis and Ethanol Fermentation of Formic-Fractionated-Sugarcane Bagasse. Vietnam J. Sci. Technol. 2018, 54, 222. DOI: 10.15625/2525-2518/54/2A/11934.
  • Patiño, M. A.; Ortiz, J. P.; Velásquez, M.; Stambuk, B. U. D‐Xylose Consumption by Nonrecombinant Saccharomyces cerevisiae: A Review. Yeast. 2019, 36, 541–556.
  • Cheng, C.; Tang, R.-Q.; Xiong, L.; Hector, R. E.; Bai, F.-W.; Zhao, X.-Q. Association of Improved Oxidative Stress Tolerance and Alleviation of Glucose Repression with Superior Xylose-Utilization Capability by a Natural Isolate of Saccharomyces cerevisiae. Biotechnol. Biofuels. 2018, 11, 28.
  • Palma, M.; Guerreiro, J. F.; Sá-Correia, I. A. R.; Tolerance, tAAi Saccharomyces cerevisiae and Zygosaccharomyces bailii: A. Front Microbiol. 2018, 9, 274.
  • Li, H.; Chen, X.; Xiong, L.; Luo, M.; Chen, X.; Wang, C.; Huang, C.; Chen, X. Stepwise Enzymatic Hydrolysis of Alkaline Oxidation Treated Sugarcane Bagasse for the Co-Production of Functional Xylo-Oligosaccharides and Fermentable Sugars. Bioresour. Technol. 2019, 275, 345–351.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.