283
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Study on the use of bovine blood protein hydrolysate as a peptone in microbial culture media

, , ORCID Icon, , &

References

  • Akoijam, N.; Kalita, D.; Joshi, S. R. Bacteria and Their Industrial Importance. In Industrial Microbiology and Biotechnology; Verma, P., Ed.; Springer Singapore: Singapore, 2022; pp. 63–79. DOI: 10.1007/978-981-16-5214-1_2.
  • Tchobanoglous, G.; Stensel, H. D.; Tsuchihashi, R.; Burton, F. L.; Abu-Orf, M.; Bowden, G.; Pfrang, W.; Metcalf & Eddy, Eds. Wastewater Engineering: Treatment and Resource Recovery. 2th ed.; McGraw-Hill Education, New York, NY, 2014.
  • Jagadeesan, Y.; Meenakshisundaram, S.; Saravanan, V.; Balaiah, A. Greener and Sustainable Biovalorization of Poultry Waste into Peptone via Bacto-Enzymatic Digestion: A Breakthrough Chemical-Free Bioeconomy Waste Management Approach. Waste Biomass. Valor. 2022, 13, 3197–3219. DOI: 10.1007/s12649-022-01713-0.
  • Bridson, E. Y.; Brecker, A. Chapter III Design and Formulation of Microbial Culture Media. In Methods in Microbiology. Elsevier, Academic Press, 1970, 3, pp. 229–295. DOI: 10.1016/S0580-9517(08)70541-5.
  • Broli, G.; Nygaard, H.; Sletta, H.; Sandnes, K.; Aasen, I. M. Farmed Salmon Rest Raw Materials as a Source of Peptones for Industrial Fermentation Media. Process Biochem. 2021, 102, 157–164. DOI: 10.1016/j.procbio.2020.12.004.
  • Tuysuz, E.; Ozkan, H.; Arslan, N. P.; Adiguzel, A.; Baltaci, M. O.; Taskin, M. Bioconversion of Waste Sheep Wool to Microbial Peptone by Bacillus Licheniformis EY2. Biofuels Bioprod. Bioref. 2021, 15, 1372–1384. DOI: 10.1002/bbb.2232.
  • Etemadian, Y.; Ghaemi, V.; Shaviklo, A. R.; Pourashouri, P.; Sadeghi Mahoonak, A. R.; Rafipour, F. Development of Animal/Plant-Based Protein Hydrolysate and Its Application in Food, Feed and Nutraceutical Industries: State of the Art. J. Cleaner Prod. 2021, 278, 123219. DOI: 10.1016/j.jclepro.2020.123219.
  • Fallah, M.; Bahram, S.; Javadian, S. R. Fish Peptone Development Using Enzymatic Hydrolysis of Silver Carp by‐Products as a Nitrogen Source in Staphylococcus Aureus Media. Food Sci. Nutr. 2015, 3, 153–157. DOI: 10.1002/fsn3.198.
  • Saputra, D.; Nurhayati, T.; Purwaningsih, S. End Post-Rigour Phase Yellowstripe Scad Fish (Caranx leptolepis) Peptones and Its Application for Bacteria’s Growth Media. Food Res. 2019, 4, 413–420. DOI: 10.26656/fr.2017.4(2).210.
  • Vázquez, J. A.; Durán, A. I.; Menduíña, A.; Nogueira, M. Biotechnological Valorization of Food Marine Wastes: Microbial Productions on Peptones Obtained from Aquaculture by-Products. Biomolecules 2020, 10, 1184. DOI: 10.3390/biom10081184.
  • Setijawati, D.; Jaziri, A. A.; Yufidasari, H. S.; Pratomo, M. D.; Wardani, D. W.; Ersyah, D.; Huda, N. Characteristics and Use of Peptones from Catfish (Clarias gariepinus) and Pangas Catfish (Pangasius pangasius) Heads as Bacterial Growth Media. Squalen Bull. Marine Fisheries Postharvest Biotech. 2020, 15, 19. DOI: 10.15578/squalen.v15i1.437.
  • Jaziri, A.; Setijawati, D.; Yufidasari, H.; Dwi Pratomo, M.; Wardani, D.; Ersyah, D.; Huda, N. Characteristics of Peptones from Grouper (Epinephelus fuscoguttatus) and Parrotfish (Scarus javanicus) Head by-Products as Bacterial Culture Media. J. Biotech. Res. 2020, 11, 1–12.
  • Petrova, I.; Tolstorebrov, I.; Zhivlyantseva, I.; Eikevik, T. M. Utilization of Fish Protein Hydrolysates as Peptones for Microbiological Culture Medias. Food Biosci. 2021, 42, 101063. DOI: 10.1016/j.fbio.2021.101063.
  • Veerapandian, B.; Shanmugam, S. R.; Varadhan, S.; Sarwareddy, K. K.; Mani, K. P.; Ponnusami, V. Levan Production from Sucrose Using Chicken Feather Peptone as a Low Cost Supplemental Nutrient Source. Carbohydr. Polym. 2020, 227, 115361. DOI: 10.1016/j.carbpol.2019.115361.
  • Nakamura, A.; Takahashi, H.; Sulaiman, S.; Phraephaisarn, C.; Keeratipibul, S.; Kuda, T.; Kimura, B. Evaluation of Peptones from Chicken Waste as a Nitrogen Source for Micro‐Organisms. Lett. Appl. Microbiol. 2021, 72, 408–414. DOI: 10.1111/lam.13428.
  • Eiríksdóttir, H.; Stefánsson, M. Ö.; Einarsson, H. Development of Growth Media from Agricultural by-Products for Cultivation of PUFA-Producing Sicyoidochytrium minutum. Mar. Drugs 2021, 20, 8. DOI: 10.3390/md20010008.
  • Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. Protein Hydrolysates in Animal Nutrition: Industrial Production, Bioactive Peptides, and Functional Significance. J. Anim. Sci. Biotechnol. 2017, 8, 24. DOI: 10.1186/s40104-017-0153-9.
  • Kosasih, W.; Ratnaningrum, D.; Endah, E. S.; Pudjiraharti, S.; Priatni, S. Scaling up Process for Fish Peptone Production. IOP Conf. Ser: Earth Environ. Sci. 2018, 160, 012007. DOI: 10.1088/1755-1315/160/1/012007.
  • Zheng, Y.; Chen, Q.; Shan, A.; Zhang, H. Optimisation of the Enzymatic Hydrolysis of Blood Cells with a Neutral Protease. Biomed Res. Int. 2013, 2013, 278927. DOI: 10.1155/2013/278927.
  • Bah, C. S. F.; Bekhit, A. E.-D. A.; Carne, A.; McConnell, M. A. Slaughterhouse Blood: An Emerging Source of Bioactive Compounds: Slaughterhouse Blood…. Compr. Rev. Food Sci. Food Saf. 2013, 12, 314–331. DOI: 10.1111/1541-4337.12013.
  • Abramo, K. Tissue Submission Procedure. https://mmcri.org/deptPages/fac/downloads/Histo_Website_Procedures.pdf.
  • Duarte, F. J.; Arroyo, O.; Beristain, C. I.; Argaiz, A.; Garcia, H. S. Enzymatic Hydrolysis of Whole Bovine Blood and Its Relationship to Some Colligative Properties. J. Food Sci. 1988, 53, 272–273. DOI: 10.1111/j.1365-2621.1988.tb10226.x.
  • Anson, M. L. The Estimation of Pepsin, Trypsin, Papain, and Cathepsin with Hemoglobin. J. Gen. Physiol. 1938, 22, 79–89. DOI: 10.1085/jgp.22.1.79.
  • Haurowitz, F.; Tunca, M.; Schwerin, P.; Göksu, V. The Action of Trypsin on Native and Denatured Proteins. J. Biol. Chem. 1945, 157, 621–625. DOI: 10.1016/S0021-9258(18)51096-6.
  • Fang, P.; Liu, M.; Xue, Y.; Yao, J.; Zhang, Y.; Shen, H.; Yang, P. Controlling Nonspecific Trypsin Cleavages in LC-MS/MS-Based Shotgun Proteomics Using Optimized Experimental Conditions. Analyst 2015, 140, 7613–7621. DOI: 10.1039/C5AN01505G.
  • Schägger, H.; von Jagow, G. Tricine-Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis for the Separation of Proteins in the Range from 1 to 100 KDa. Anal. Biochem. 1987, 166, 368–379. DOI: 10.1016/0003-2697(87)90587-2.
  • Roche. Roche Applied Science, Lab Faqs, Technical Data Sheets. 2nd ed.; Roche, Germany, 2003.
  • Sudarmadji, S.; Haryono dan Suhardi, B. Prosedur Analisa Bahan Makanan Dan Pertanian. 4th ed.; Liberty, Yogyakarta, 1997.
  • AOAC. Official Methods of Analysis, Method Number: 984.13, Protein (Crude) in Animal Feed Copper Catalyst Kajeldahl Method. Vol. 1, 15th ed.; Association of Official Analytical Chemists,Arlington, 1990.
  • IS 3077. Specification for Roasted and Ground Coffee; Bureau of Indian Standards, Manak Bhavan, New Dehli, 1992.
  • IS 6287. Methods of Sampling and Analysis for Sugar Confectionery, Method Number: Is 6287; Bureau of Indian Standards, Manak Bhavan, New Dehli, 1985.
  • AOAC. Official Methods of Analysis, Method Number: 973.31, Nitrites in Cured Meat Colorimetric Method, 15th ed.; Association of Official Analytical Chemists, Washington DC, 1990; Vol. 2.
  • Dai, Z.; Wu, Z.; Jia, S.; Wu, G. Analysis of Amino Acid Composition in Proteins of Animal Tissues and Foods as Pre-Column o-Phthaldialdehyde Derivatives by HPLC with Fluorescence Detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 964, 116–127. DOI: 10.1016/j.jchromb.2014.03.025.
  • Lee, K. S.; Drescher, D. G. Fluorometric Amino-Acid Analysis with o-Phthaldialdehyde (OPA). Int. J. Biochem. 1978, 9, 457–467. DOI: 10.1016/0020-711X(78)90075-7.
  • Jones, B. N.; Pääbo, S.; Stein, S. Amino Acid Analysis and Enzymatic Sequence Determination of Peptides by an Improved o-Phthaldialdehyde Precolumn Labeling Procedure. J. Liq. Chromatogr. 1981, 4, 565–586. DOI: 10.1080/01483918108059956.
  • Liang, S.; Sanchez-Espiridion, B.; Xie, H.; Ma, J.; Wu, X.; Liang, D. Determination of Proline in Human Serum by a Robust LC-MS/MS Method: Application to Identification of Human Metabolites as Candidate Biomarkers for Esophageal Cancer Early Detection and Risk Stratification: LC-MS/MS Determination of Proline in Human Serum. Biomed. Chromatogr. 2015, 29, 570–577. DOI: 10.1002/bmc.3315.
  • Nakano, Y.; Konya, Y.; Taniguchi, M.; Fukusaki, E. Development of a Liquid Chromatography-Tandem Mass Spectrometry Method for Quantitative Analysis of Trace d-Amino Acids. J. Biosci. Bioeng. 2017, 123, 134–138. DOI: 10.1016/j.jbiosc.2016.07.008.
  • Sezonov, G.; Joseleau-Petit, D.; D'Ari, R. Escherichia Coli Physiology in Luria-Bertani Broth. J. Bacteriol. 2007, 189, 8746–8749. DOI: 10.1128/JB.01368-07.
  • Bridson, E. Y. The OXOID MANUAL, 9th ed.; Oxoid Limited, Basingstoke, 2006.
  • Safuan, H.; Towers, I.; Sidhu, H.; Jovanoski, Z. A. Simple Model for the Total Microbial Biomass under Occlusion of Healthy Human Skin; 19th International Congress on Modelling and Simulation, Perth, Australia, 2011.
  • Sprouffske, K.; Wagner, A. Growthcurver: An R Package for Obtaining Interpretable Metrics from Microbial Growth Curves. BMC Bioinformatics. 2016, 17, 172. DOI: 10.1186/s12859-016-1016-7.
  • Sprouffske, K. Using Growthcurver, https://cran.r-project.org/web/packages/growthcurver/vignettes/Growthcurver-vignette.html, 2020.
  • Deng, Y.; van der Veer, F.; Sforza, S.; Gruppen, H.; Wierenga, P. A. Towards Predicting Protein Hydrolysis by Bovine Trypsin. Process Biochem. 2018, 65, 81–92. DOI: 10.1016/j.procbio.2017.11.006.
  • Cleff, T. Applied Statistics and Multivariate Data Analysis for Business and Economics: A Modern Approach Using SPSS, Stata, and Excel. 1st ed.; Springer: Cham, 2019. DOI: 10.1007/9783030177676.
  • Clarke, K. G. Microbiology. In Bioprocess Engineering; Elsevier, Woodhead Publishing, Oxford, 2013; pp 7–24. DOI: 10.1533/9781782421689.7.
  • Kargi, F. Re-Interpretation of the Logistic Equation for Batch Microbial Growth in Relation to Monod Kinetics. Lett. Appl. Microbiol. 2009, 48, 398–401. DOI: 10.1111/j.1472-765X.2008.02537.x.
  • Wachenheim, D. E.; Patterson, J. A.; Ladisch, M. R. Analysis of the Logistic Function Model: Derivation and Applications Specific to Batch Cultured Microorganisms. Bioresour. Technol. 2003, 86, 157–164. DOI: 10.1016/S0960-8524(02)00149-9.
  • Annadurai, G.; Rajesh Babu, S.; Srinivasamoorthy, V. R. Development of Mathematical Models (Logistic, Gompertz and Richards Models) Describing the Growth Pattern of Pseudomonas Putida (NICM 2174). Bioprocess Engineering 2000, 23, 607–612. DOI: 10.1007/s004490000209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.