118
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Process intensification for the enhancement of growth and chlorophyll molecules of isolated Chlorella thermophila: A systematic experimental and optimization approach

, , & ORCID Icon

References

  • Hossain, N.; Zaini, J.; Mahlia, T. M. I. Experimental Investigation of Energy Properties for Stigonematales sp. Microalgae as Potential Biofuel Feedstock. Int. J. Sustain. Eng. 2019, 12, 123–130. DOI: 10.1080/19397038.2018.1521882.
  • Hossain, N.; Zaini, J.; Mahlia, T. M. I.; Azad, A. K. Elemental, Morphological and Thermal Analysis of Mixed Microalgae Species from Drain Water. Renew. Energy. 2019, 131, 617–624. DOI: 10.1016/j.renene.2018.07.082.
  • Kumar, R. A Review on the Modelling of Hydrothermal Liquefaction of Biomass and Waste Feedstocks. Energy Nexus 2022, 5, 100042. DOI: 10.1016/j.nexus.2022.100042.
  • Clark, M. Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes; Elsevier: Amsterdam, The Netherlands, 2011.
  • Khanra, S.; Mondal, M.; Halder, G.; Tiwari, O. N.; Gayen, K.; Bhowmick, T. K. Downstream Processing of Microalgae for Pigments, Protein and Carbohydrate in Industrial Application: A Review. Food Bioprod. Process. 2018, 110, 60–84. DOI: 10.1016/j.fbp.2018.02.002.
  • Viera, I.; Pérez-Gálvez, A.; Roca, M. Green Natural Colorants. Molecules 2019, 24, 154. DOI: 10.3390/molecules24010154.
  • Kustov, A. V.; Belykh, D. V.; Smirnova, N. L.; Venediktov, E. A.; Kudayarova, T. V.; Kruchin, S. O.; Khudyaeva, I. S.; Berezin, D. B. Synthesis and Investigation of Water-Soluble Chlorophyll Pigments for Antimicrobial Photodynamic Therapy. Dyes Pigm. 2018, 149, 553–559. DOI: 10.1016/j.dyepig.2017.09.073.
  • Hosikian, A.; Lim, S.; Halim, R.; Danquah, M. K. Chlorophyll Extraction from Microalgae: A Review on the Process Engineering Aspects. Int. J. Chem. Eng. 2010, 2010, 1–11. DOI: 10.1155/2010/391632.
  • Park, J.; Craggs, R.; Shilton, A. Wastewater Treatment High Rate Algal Ponds for Biofuel Production. Bioresour. Technol. 2011, 102, 35–42. DOI: 10.1016/j.biortech.2010.06.158.
  • Juneja, A.; Ceballos, R. M.; Murthy, G. S. Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review. Energies 2013, 6, 4607–4638. DOI: 10.3390/en6094607.
  • Gonçalves, A. L.; Pires, J. C.; Simoes, M. The Effects of Light and Temperature on Microalgal Growth and Nutrient Removal: An Experimental and Mathematical Approach. RSC Adv. 2016, 6, 22896–22907. DOI: 10.1039/C5RA26117A.
  • Amini Khoeyi, Z.; Seyfabadi, J.; Ramezanpour, Z. Effect of Light Intensity and Photoperiod on Biomass and Fatty Acid Composition of the Microalgae, Chlorella vulgaris. Aquacult. Int. 2012, 20, 41–49. DOI: 10.1007/s10499-011-9440-1.
  • Ghosh, A.; Khanra, S.; Mondal, M.; Devi, T. I.; Halder, G.; Tiwari, O. N.; Bhowmick, T. K.; Gayen, K. Biochemical Characterization of Microalgae Collected from North East Region of India Advancing Towards the Algae‐Based Commercial Production. Asia-Pac. J. Chem. Eng. 2017, 12, 745–754. DOI: 10.1002/apj.2114.
  • Bohutskyi, P.; Kligerman, D. C.; Byers, N.; Nasr, L. K.; Cua, C.; Chow, S.; Su, C.; Tang, Y.; Betenbaugh, M. J.; Bouwer, E. J.; et al. Effects of Inoculum Size, Light Intensity, and Dose of Anaerobic Digestion Centrate on Growth and Productivity of Chlorella and Scenedesmus Microalgae and Their Poly-Culture in Primary and Secondary Wastewater. Algal. Res. 2016, 19, 278–290. DOI: 10.1016/j.algal.2016.09.010.
  • Singh, R.; Upadhyay, A. K.; Chandra, P.; Singh, D. P. Sodium Chloride Incites Reactive Oxygen Species in Green Algae Chlorococcum humicola and Chlorella vulgaris: Implication on Lipid Synthesis, Mineral Nutrients and Antioxidant System. Bioresour. Technol. 2018, 270, 489–497. DOI: 10.1016/j.biortech.2018.09.065.
  • Asada, K. The Water-Water Cycle in Chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 601–639. DOI: 10.1146/annurev.arplant.50.1.601.
  • Demidchik, V.; Straltsova, D.; Medvedev, S. S.; Pozhvanov, G. A.; Sokolik, A.; Yurin, V. Stress-Induced Electrolyte Leakage: The Role of K+-Permeable Channels and Involvement in Programmed Cell Death and Metabolic Adjustment. J. Exp. Bot. 2014, 65, 1259–1270. DOI: 10.1093/jxb/eru004.
  • Ji, X.; Cheng, J.; Gong, D.; Zhao, X.; Qi, Y.; Su, Y.; Ma, W. The Effect of NaCl Stress on Photosynthetic Efficiency and Lipid Production in Freshwater Microalga—Scenedesmus obliquus XJ002. Sci. Total Environ. 2018, 633, 593–599. DOI: 10.1016/j.scitotenv.2018.03.240.
  • Prakasham, R.; Rao, C. S.; Sarma, P. Green Gram Husk—An Inexpensive Substrate for Alkaline Protease Production by Bacillus sp. in Solid-State Fermentation. Bioresour. Technol. 2006, 97, 1449–1454. DOI: 10.1016/j.biortech.2005.07.015.
  • Prakasham, R. S.; Rao, C. S.; Rao, R. S.; Lakshmi, G. S.; Sarma, P. N. L‐Asparaginase Production by Isolated Staphylococcus sp.–6A: Design of Experiment considering Interaction Effect for Process Parameter Optimization. J. Appl. Microbiol. 2007, 102, 1382–1391. DOI: 10.1111/j.1365-2672.2006.03173.x.
  • Himabindu, M.; Ravichandra, P.; Vishalakshi, K.; Jetty, A. Optimization of Critical Medium Components for the Maximal Production of Gentamicin by Micromonospora echinospora ATCC 15838 Using Response Surface Methodology. Appl. Biochem. Biotechnol. 2006, 134, 143–154. DOI: 10.1385/ABAB:134:2:143.
  • Houng, J.-Y.; Liao, J.-H.; Wu, J.-Y.; Shen, S.-C.; Hsu, H.-F. Enhancement of Asymmetric Bioreduction of Ethyl 4-Chloro Acetoacetate by the Design of Composition of Culture Medium and Reaction Conditions. Process. Biochem. 2007, 42, 1–7. DOI: 10.1016/j.procbio.2006.03.035.
  • Baishan, F.; Hongwen, C.; Xiaolan, X.; Ning, W.; Zongding, H. Using Genetic Algorithms Coupling Neural Networks in a Study of Xylitol Production: Medium Optimisation. Process. Biochem. 2003, 38, 979–985.
  • Rao, R.; Prakasham, R. S.; Prasad, K.; Rajesham, S.; Sarma, P. N.; Rao, L. Xylitol Production by Candida sp.: Parameter Optimization Using Taguchi Approach. Process. Biochem. 2004, 39, 951–956. DOI: 10.1016/S0032-9592(03)00207-3.
  • Arulsudar, N.; Subramanian, N.; Murthy, R. Comparison of Artificial Neural Network and Multiple Linear Regression in the Optimization of Formulation Parameters of Leuprolide Acetate Loaded Liposomes. J. Pharm. Pharm. Sci. 2005, 8, 243–258.
  • Žužek, M.; Friedrich, J.; Cestnik, B.; Karalič, A.; Cimerman, A. Optimization of Fermentation Medium by a Modified Method of Genetic Algorithms. Biotechnol. Tech. 1996, 10, 991–996. DOI: 10.1007/BF00180409.
  • Rao, C. S.; Sathish, T.; Mahalaxmi, M.; Laxmi, G. S.; Rao, R. S.; Prakasham, R. S. Modelling and Optimization of Fermentation Factors for Enhancement of Alkaline Protease Production by Isolated Bacillus circulans Using Feed‐Forward Neural Network and Genetic Algorithm. J. Appl. Microbiol. 2008, 104, 889–898. DOI: 10.1111/j.1365-2672.2007.03605.x.
  • Kumar, V.; Muthuraj, M.; Palabhanvi, B.; Ghoshal, A. K.; Das, D. High Cell Density Lipid Rich Cultivation of a Novel Microalgal Isolate Chlorella Sorokiniana FC6 IITG in a Single-Stage Fed-Batch Mode under Mixotrophic Condition. Bioresour. Technol. 2014, 170, 115–124. DOI: 10.1016/j.biortech.2014.07.066.
  • Berman-Frank, I.; Lundgren, P.; Chen, Y. B.; Küpper, H.; Kolber, Z.; Bergman, B.; Falkowski, P. Segregation of Nitrogen Fixation and Oxygenic Photosynthesis in the Marine Cyanobacterium trichodesmium. Science 2001, 294, 1534–1537. DOI: 10.1126/science.1064082.
  • Carvalho, A. P.; Meireles, L. A.; Malcata, F. X. Microalgal Reactors: A Review of Enclosed System Designs and Performances. Biotechnol. Prog. 2006, 22, 1490–1506. DOI: 10.1002/bp060065r.
  • Garzón-Castro, C. L.; Cortés-Romero, J. A.; Arcos-Legarda, J.; Tello, E. Optimal Decision Curve of Light Intensity to Maximize the Biomass Concentration in a Batch Culture. Biochem. Eng. J. 2017, 123, 57–65. DOI: 10.1016/j.bej.2017.04.001.
  • Ghosh, A.; Sarkar, S.; Gayen, K.; Bhowmick, T. K. Effects of Carbon, Nitrogen, and Phosphorus Supplements on Growth and Biochemical Composition of Podohedriella sp. (MCC44) Isolated from Northeast India. Environ. Prog. Sustain. Energy 2020, 39, e13378.
  • Sarkar, S.; Manna, M. S.; Bhowmick, T. K.; Gayen, K. Priority-Based Multiple Products from Microalgae: Review on Techniques and Strategies. Crit. Rev. Biotechnol. 2020, 40, 590–607. DOI: 10.1080/07388551.2020.1753649.
  • Mondal, M.; Ghosh, A.; Tiwari, O. N.; Gayen, K.; Das, P.; Mandal, M. K.; Halder, G. Influence of Carbon Sources and Light Intensity on Biomass and Lipid Production of Chlorella Sorokiniana BTA 9031 Isolated from Coalfield Under Various Nutritional Modes. Energy Convers. Manag. 2017, 145, 247–254. DOI: 10.1016/j.enconman.2017.05.001.
  • Lichtenthaler, H. K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382.
  • Pancha, I.; Chokshi, K.; Maurya, R.; Trivedi, K.; Patidar, S. K.; Ghosh, A.; Mishra, S. Salinity Induced Oxidative Stress Enhanced Biofuel Production Potential of Microalgae Scenedesmus sp. CCNM 1077. Bioresour. Technol. 2015, 189, 341–348. DOI: 10.1016/j.biortech.2015.04.017.
  • Coleman, M. C.; Buck, K. K.; Block, D. E. An Integrated Approach to Optimization of Escherichia coli Fermentations Using Historical Data. Biotechnol. Bioeng. 2003, 84, 274–285. DOI: 10.1002/bit.10719.
  • Roy, S.; Banerjee, R.; Bose, P. K. Performance and Exhaust Emissions Prediction of a CRDI Assisted Single Cylinder Diesel Engine Coupled with EGR Using Artificial Neural Network. Appl. Energy 2014, 119, 330–340. DOI: 10.1016/j.apenergy.2014.01.044.
  • Sarkar, S.; Mankad, J.; Padhihar, N.; Manna, M. S.; Bhowmick, T. K.; Gayen, K. Enhancement of Growth and Biomolecules (Carbohydrates, Proteins, and Chlorophylls) of Isolated Chlorella thermophila Using Optimization Tools. Prep. Biochem. Biotechnol. 2022, 1–17. DOI: 10.1080/10826068.2022.2033995.
  • White, D. A.; Pagarette, A.; Rooks, P.; Ali, S. T. The Effect of Sodium Bicarbonate Supplementation on Growth and Biochemical Composition of Marine Microalgae Cultures. J. Appl. Phycol. 2013, 25, 153–165. DOI: 10.1007/s10811-012-9849-6.
  • Taguchi, G. Introduction to Quality Engineering: Designing Quality into Products and Processes; The Organization: Tokyo, Japan, 1986.
  • Difusa, A.; Talukdar, J.; Kalita, M. C.; Mohanty, K.; Goud, V. V. Effect of Light Intensity and pH Condition on the Growth, Biomass and Lipid Content of Microalgae Scenedesmus Species. Biofuels 2015, 6, 37–44. DOI: 10.1080/17597269.2015.1045274.
  • Xu, Y.; Ibrahim, I. M.; Harvey, P. J. The Influence of Photoperiod and Light Intensity on the Growth and Photosynthesis of Dunaliella salina (Chlorophyta) CCAP 19/30. Plant Physiol. Biochem. 2016, 106, 305–315. DOI: 10.1016/j.plaphy.2016.05.021.
  • Mulders, K. J. M.; Lamers, P. P.; Martens, D. E.; Wijffels, R. H. Phototrophic Pigment Production with Microalgae: Biological Constraints and Opportunities. J. Phycol. 2014, 50, 229–242. DOI: 10.1111/jpy.12173.
  • Eze, V. C.; Velasquez-Orta, S. B.; Hernández-García, A.; Monje-Ramírez, I.; Orta-Ledesma, M. T. Kinetic Modelling of Microalgae Cultivation for Wastewater Treatment and Carbon Dioxide Sequestration. Algal Res. 2018, 32, 131–141. DOI: 10.1016/j.algal.2018.03.015.
  • Münkel, R.; Schmid-Staiger, U.; Werner, A.; Hirth, T. Optimization of Outdoor Cultivation in Flat Panel Airlift Reactors for Lipid Production by Chlorella vulgaris. Biotechnol. Bioeng. 2013, 110, 2882–2893. DOI: 10.1002/bit.24948.
  • Singh, S.; Singh, P. Effect of Temperature and Light on the Growth of Algae Species: A Review. Renew. Sustain. Energy Rev. 2015, 50, 431–444. DOI: 10.1016/j.rser.2015.05.024.
  • Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genomics. 2014, 2014, 701596. DOI: 10.1155/2014/701596.
  • Periasamy, R.; Palvannan, T. Optimization of Laccase Production by Pleurotus ostreatus IMI 395545 Using the Taguchi DOE Methodology. J. Basic Microbiol. 2010, 50, 548–556. DOI: 10.1002/jobm.201000095.
  • Shahbazian, A.; Navarchian, A. H.; Pourmehr, M. Application of Taguchi Method to Investigate the Effects of Process Factors on the Performance of Batch Emulsion Polymerization of Vinyl Chloride. J. Appl. Polym. Sci. 2009, 113, 2739–2746. DOI: 10.1002/app.30194.
  • Molloy, C.; Syrett, P. Interrelationships between Uptake of Urea and Uptake of Ammonium by Microalgae. J. Exp. Mar. Biol. Ecol. 1988, 118, 85–95. DOI: 10.1016/0022-0981(88)90232-8.
  • Solomon, C. M.; Glibert, P. M. Urease Activity in Five Phytoplankton Species. Aquat. Microb. Ecol. 2008, 52, 149–157. DOI: 10.3354/ame01213.
  • Yu, B. S.; Sung, Y. J.; Hong, M. E.; Sim, S. J. Improvement of Photoautotrophic Algal Biomass Production after Interrupted CO2 Supply by Urea and KH2PO4 Injection. Energies 2021, 14, 778. DOI: 10.3390/en14030778.
  • Flynn, K. J.; Butler, I. Nitrogen Sources for the Growth of Marine Microalgae: Role of Dissolved Free Amino Acids. Mar. Ecol. Prog. Ser. 1986, 34, 281–304. DOI: 10.3354/meps034281.
  • Berman-Frank, I.; Lundgren, P.; Falkowski, P. Nitrogen Fixation and Photosynthetic Oxygen Evolution in Cyanobacteria. Res. Microbiol. 2003, 154, 157–164. DOI: 10.1016/S0923-2508(03)00029-9.
  • Chiranjeevi, P.; Mohan, S. V. Critical Parametric Influence on Microalgae Cultivation towards Maximizing Biomass Growth with Simultaneous Lipid Productivity. Renew. Energy 2016, 98, 64–71. DOI: 10.1016/j.renene.2016.03.063.
  • Markou, G.; Depraetere, O.; Muylaert, K. Effect of Ammonia on the Photosynthetic Activity of Arthrospira and Chlorella: A Study on Chlorophyll Fluorescence and Electron Transport. Algal Res. 2016, 16, 449–457. DOI: 10.1016/j.algal.2016.03.039.
  • Muthuraj, M.; Kumar, V.; Palabhanvi, B.; Das, D. Evaluation of Indigenous Microalgal Isolate Chlorella sp. FC2 IITG as a Cell Factory for Biodiesel Production and Scale up in Outdoor Conditions. J. Ind. Microbiol. Biotechnol. 2014, 41, 499–511. DOI: 10.1007/s10295-013-1397-9.
  • Morales-Sánchez, D.; Tinoco-Valencia, R.; Kyndt, J.; Martinez, A. Heterotrophic Growth of Neochloris Oleoabundans Using Glucose as a Carbon Source. Biotechnol. Biofuels. 2013, 6, 100–113. DOI: 10.1186/1754-6834-6-100.
  • Radkova, M.; Stoyneva-Gärtner, M.; Dincheva, I.; Stoykova, P.; Uzunov, B.; Dimitrova, P.; Borisova, C.; Gärtner, G. Chlorella vulgaris H1993 and Desmodesmus communis H522 for Low-Cost Production of High-Value Microalgal Products. Biotechnol. Biotechnol. Equip. 2019, 33, 243–249. DOI: 10.1080/13102818.2018.1562381.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.