234
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Cost-effective, high-yield production of Pyrobaculum calidifontis DNA polymerase for PCR application

, ORCID Icon, & ORCID Icon

References

  • Adam, P. S.; Borrel, G.; Brochier-Armanet, C.; Gribaldo, S. The Growing Tree of Archaea: new Perspectives on Their Diversity, Evolution and Ecology. ISME J. 2017, 11, 2407–2425.
  • Baker, B. J.; De Anda, V.; Seitz, K. W.; Dombrowski, N.; Santoro, A. E.; Lloyd, K. G. Diversity, Ecology and Evolution of Archaea. Nat. Microbiol. 2020, 5, 887–900.
  • Dumorné, K.; Córdova, D. C.; Astorga-Eló, M.; Renganathan, P. Extremozymes: A Potential Source for Industrial Applications. J. Microbiol. Biotechnol. 2017, 27, 649–659.
  • Ishino, S.; Ishino, Y. DNA Polymerases as Useful Reagents for Biotechnology – The History of Developmental Research in the Field. Front. Microbiol. 2014, 5, 465.
  • Cabrera, M. Á.; Blamey, J. M. Biotechnological Applications of Archaeal Enzymes from Extreme Environments. Biol. Res. 2018, 51, 37.
  • Zhu, H.; Zhang, H.; Xu, Y.; Laššáková, S.; Korabečná, M.; Neužil, P. PCR past, Present and Future. Biotechniques. 2020, 69, 317–325.
  • Li, H.; Bai, R.; Zhao, Z.; Tao, L.; Ma, M.; Ji, Z.; Jian, M.; Ding, Z.; Dai, X.; Bao, F.; Liu, A. Application of Droplet Digital PCR to Detect the Pathogens of Infectious Diseases. Biosci. Rep. 2018, 38, BSR20181170.
  • Olmedillas-López, S.; García-Arranz, M.; García-Olmo, D. Current and Emerging Applications of Droplet Digital PCR in Oncology. Mol. Diagn. Ther. 2017, 21, 493–510.
  • Kuypers, J.; Jerome, K. R. Applications of Digital PCR for Clinical Microbiology. J. Clin. Microbiol. 2017, 55, 1621–1628.
  • Raia, P.; Delarue, M.; Sauguet, L. An Updated Structural Classification of Replicative DNA Polymerases. Biochem. Soc. Trans. 2019, 47, 239–249.
  • Kazlauskas, D.; Krupovic, M.; Guglielmini, J.; Forterre, P.; Venclovas, Č. Diversity and Evolution of B-Family DNA Polymerases. Nucleic Acids Res. 2020, 48, 10142–10156.
  • Zhang, L.; Kang, M.; Xu, J.; Huang, Y. Archaeal DNA Polymerases in Biotechnology. Appl. Microbiol. Biotechnol. 2015, 99, 6585–6597.
  • Amo, T.; Paje, M. L.; Inagaki, A.; Ezaki, S.; Atomi, H.; Imanaka, T. Pyrobaculum calidifontis sp. nov., a Novel Hyperthermophilic Archaeon That Grows in Atmospheric Air. Archaea. 2002, 1, 113–121.
  • Ali, S. F.; Rashid, N.; Imanaka, T.; Akhtar, M. Family B DNA Polymerase from a Hyperthermophilic Archaeon Pyrobaculum calidifontis: Cloning, Characterization and PCR Application. J. Biosci. Bioeng. 2011, 112, 118–123.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254.
  • Aschenbrenner, J.; Marx, A. DNA Polymerases and Biotechnological Applications. Curr. Opin. Biotechnol. 2017, 48, 187–195.
  • Coulther, T. A.; Stern, H. R.; Beuning, P. J. Engineering Polymerases for New Functions. Trends Biotechnol. 2019, 37, 1091–1103.
  • Wang, F.; Lv, H.; Li, Q.; Li, J.; Zhang, X.; Shi, J.; Wang, L.; Fan, C. Implementing Digital Computing with DNA-Based Switching Circuits. Nat. Commun. 2020, 11, 121.
  • Kaur, J.; Kumar, A.; Kaur, J. Strategies for Optimization of Heterologous Protein Expression in E. coli: Roadblocks and Reinforcements. Int. J. Biol. Macromol. 2018, 106, 803–822.
  • Galluccio, M.; Pantanella, M.; Giudice, D.; Brescia, S.; Indiveri, C. Low Temperature Bacterial Expression of the Neutral Amino Acid Transporters SLC1A5 (ASCT2), and SLC6A19 (B0AT1). Mol. Biol. Rep. 2020, 47, 7283–7289.
  • Fazaeli, A.; Golestani, A.; Lakzaei, M.; Rasi Varaei, S. S.; Aminian, M. Expression Optimization, Purification, and Functional Characterization of Cholesterol Oxidase from Chromobacterium sp. DS1. PLOS One. 2019, 14, e0212217.
  • Ki, M. R.; Pack, S. P. Fusion Tags to Enhance Heterologous Protein Expression. Appl. Microbiol. Biotechnol. 2020, 104, 2411–2425.
  • Su, L.; Wu, S.; Feng, J.; Wu, J. High-Efficiency Expression of Sulfolobus acidocaldarius Maltooligosyl Trehalose Trehalohydrolase in Escherichia coli through Host Strain and Induction Strategy Optimization. Bioprocess Biosyst. Eng. 2019, 42, 345–354.
  • San-Miguel, T.; Pérez-Bermúdez, P.; Gavidia, I. Production of Soluble Eukaryotic Recombinant Proteins in E. coli is Favoured in Early Log-Phase Cultures Induced at Low Temperature. Springerplus. 2013, 2, 89.
  • Martínez-Espinosa, R. M. Heterologous and Homologous Expression of Proteins from Haloarchaea: Denitrification as Case of Study. IJMS. 2019, 21, 82.
  • Larentis, A. L.; Nicolau, J. F. M. Q.; Esteves, G. d S.; Vareschini, D. T.; de Almeida, F. V. R.; dos Reis, M. G.; Galler, R.; Medeiros, M. A. Evaluation of Pre-Induction Temperature, Cell Growth at Induction and IPTG Concentration on the Expression of a Leptospiral Protein in E. coli Using Shaking Flasks and Microbioreactor. BMC Res. Notes. 2014, 7, 671.
  • Tolia, N. H.; Joshua-Tor, L. Strategies for Protein Coexpression in Escherichia coli. Nat. Methods. 2006, 3, 55–64.
  • , Gao, L. W.; Zhu, H. T.; Liu, C. Y.; Lv, Z. X.; Fan, X. M.; Zhang, Y. W. A Highly Active Heparinase I from Bacteroides cellulosilyticus: Cloning, High Level Expression, and Molecular Characterization. PLOS One. 2020, 15, e0240920.
  • Malik, A.; Alsenaidy, A. M.; Elrobh, M.; Khan, W.; Alanazi, M. S.; Bazzi, M. D. Optimization of Expression and Purification of HSPA6 Protein from Camelus dromedarius in E. coli. Saudi J. Biol. Sci. 2016, 23, 410–419.
  • Ahmad, A.; Ali, S. F.; Azim, N.; Rashid, N. Studies on Enhancement of Production of Recombinant DNA Polymerase Originated from Pyrobaculum calidifontis. Biologia. 2021, 76, 3579–3586.
  • Bębenek, A.; Ziuzia-Graczyk, I. Fidelity of DNA Replication-A Matter of Proofreading. Curr. Genet. 2018, 64, 985–996.
  • Vagenende, V.; Yap, M. G.; Trout, B. L. Mechanisms of Protein Stabilization and Prevention of Protein Aggregation by Glycerol. Biochemistry 2009, 48, 11084–11096. DOI: 10.1021/bi900649t. PMID: 19817484.
  • Duskey, J. T.; da Ros, F.; Ottonelli, I.; Zambelli, B.; Vandelli, M. A.; Tosi, G.; Ruozi, B. Enzyme Stability in Nanoparticle Preparations Part 1: Bovine Serum Albumin Improves Enzyme Function. Molecules. 2020, 25, 4593.
  • Lee, Y. H.; Kim, K.; Lee, J. H.; Kim, H. J. Protection of Alcohol Dehydrogenase against Freeze-Thaw Stress by Ice-Binding Proteins is Proportional to Their Ice Recrystallization Inhibition Property. Mar. Drugs 2020, 18, 638.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.