439
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

High cell density continuous fermentation for L-lactic acid production from cane molasses

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Chasoy, G. R.; Chairez, I.; Durán-Páramo, E. Carbon/Nitrogen Ratio and Initial PH Effects on the Optimization of Lactic Acid Production by Lactobacillus casei Subsp Casei NRRL-441. Wulfenia 2020, 27, 37–59.
  • Vidra, A.; Tóth, A. J.; Németh, Á. Lactic Acid Production from Cane Molasses. Waste Treat. Recover. 2017, 2, 13–16. DOI: 10.1515/lwr-2017-0003.
  • Ahring, B. K.; Traverso, J. J.; Murali, N.; Srinivas, K. Continuous Fermentation of Clarified Corn Stover Hydrolysate for the Production of Lactic Acid at High Yield and Productivity. Biochem. Eng. J. 2016, 109, 162–169. DOI: 10.1016/j.bej.2016.01.012.
  • Abdel-Rahman, M. A.; Tashiro, Y.; Sonomoto, K. Recent Advances in Lactic Acid Production by Microbial Fermentation Processes. Biotechnol. Adv. 2013, 31, 877–902. DOI: 10.1016/j.biotechadv.2013.04.002.
  • Rawoof, S. A. A.; Kumar, P. S.; Vo, D. V. N.; Devaraj, K.; Mani, Y.; Devaraj, T.; Subramanian, S. Production of Optically Pure Lactic Acid by Microbial Fermentation: A Review. Environ. Chem. Lett. 2021, 19, 539–556. DOI: 10.1007/s10311-020-01083-w.
  • López-Gómez, J. P.; Alexandri, M.; Schneider, R.; Venus, J. A Review on the Current Developments in Continuous Lactic Acid Fermentations and Case Studies Utilising Inexpensive Raw Materials. Process Biochem. 2019, 79, 1–10. DOI: 10.1016/j.procbio.2018.12.012.
  • Abdel-Rahman, M. A.; Hassan, S. E. D.; El-Din, M. N.; Azab, M. S.; El-Belely, E. F.; Alrefaey, H. M. A.; Elsakhawy, T. One-Factor-at-a-Time and Response Surface Statistical Designs for Improved Lactic Acid Production from Beet Molasses by Enterococcus hirae Ds10. SN Appl. Sci. 2020, 2, 1–14. DOI: 10.1007/s42452-020-2351-x.
  • Olszewska-Widdrat, A.; Alexandri, M.; López-Gómez, J. P.; Schneider, R.; Venus, J. Batch and Continuous Lactic Acid Fermentation Based on a Multi-Substrate Approach. Microorganisms 2020, 8, 1084–1014. DOI: 10.3390/microorganisms8071084.
  • Kumar, R.; Pandey, S.; Kapoor, P.; Awasthi, S.; Bhatnagar, T. Isolation and Characterization of Endemic Strains of Lactobacillus sp. and Evaluation of Their Probiotic Activity. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 907–916.
  • Zhang, S.; Wang, J.; Jiang, H. Microbial Production of Value-Added Bioproducts and Enzymes from Molasses, a by-Product of Sugar Industry. Food Chem. 2021, 346, 128860. DOI: 10.1016/j.foodchem.2020.128860.
  • Canon, F.; Nidelet, T.; Guédon, E.; Thierry, A.; Gagnaire, V. Understanding the Mechanisms of Positive Microbial Interactions That Benefit Lactic Acid Bacteria Co-Cultures. Front. Microbiol. 2020, 11, 2088–2016. DOI: 10.3389/fmicb.2020.02088.
  • Tian, X. J.; Jiang, A. L.; Mao, Y. Q.; Wu, B.; He, M. X.; Hu, W.; Chen, J. H.; Li, W. J. Efficient L-Lactic Acid Production from Purified Sweet Sorghum Juice Coupled with Soybean Hydrolysate as Nitrogen Source by Lactobacillus thermophilus A69 Strain. J. Chem. Technol. Biotechnol. 2019, 94, 1752–1759. DOI: 10.1002/jctb.5939.
  • Unban, K.; Kanpiengjai, A.; Khatthongngam, N.; Saenjum, C.; Khanongnuch, C. Simultaneous Bioconversion of Gelatinized Starchy Waste from the Rice Noodle Manufacturing Process to Lactic Acid and Maltose-Forming α-Amylase by Lactobacillus plantarum S21, Using a Low-Cost Medium. Fermentation 2019, 5, 32–13. DOI: 10.3390/fermentation5020032.
  • Moon, S. K.; Wee, Y. J.; Choi, G. W. A Novel Lactic Acid Bacterium for the Production of High Purity L-Lactic Acid, Lactobacillus paracasei Subsp. Paracasei CHB2121. J. Biosci. Bioeng. 2012, 114, 155–159. DOI: 10.1016/j.jbiosc.2012.03.016.
  • Xu, G. q.; Chu, J.; Wang, Y. h.; Zhuang, Y. p.; Zhang, S. l.; Peng, H. q Development of a Continuous Cell-Recycle Fermentation System for Production of Lactic Acid by Lactobacillus paracasei. Process Biochem. 2006, 41, 2458–2463. DOI: 10.1016/j.procbio.2006.05.022.
  • Qin, J.; Wang, X.; Zheng, Z.; Ma, C.; Tang, H.; Xu, P. Production of L-Lactic Acid by a Thermophilic bacillus Mutant Using Sodium Hydroxide as Neutralizing Agent. Bioresour. Technol. 2010, 101, 7570–7576. DOI: 10.1016/j.biortech.2010.04.037.
  • Michalczyk, A. K.; Garbaczewska, S.; Morytz, B.; Białek, A.; Zakrzewski, J. Influence of Nitrogen Sources on D-Lactic Acid Biosynthesis by Sporolactobacillus laevolacticus DSM 442 Strain. Fermentation 2021, 7, 78–11. DOI: 10.3390/fermentation7020078.
  • Wee, Y. J.; Kim, J. N.; Yun, J. S.; Ryu, H. W. Utilization of sugar molasses for economical L(+)-lactic acid production by batch fermentation of Enterococcus faecalis. Enzyme Microb. Technol. 2004, 35, 568–573. DOI: 10.1016/j.enzmictec.2004.08.008.
  • Calabia, B. P.; Tokiwa, Y. Production of D-Lactic Acid from Sugarcane Molasses, Sugarcane Juice and Sugar Beet Juice by Lactobacillus delbrueckii. Biotechnol. Lett. 2007, 29, 1329–1332. DOI: 10.1007/s10529-007-9408-4.
  • Ohashi, R.; Yamamoto, T.; Suzuki, T. Continuous Production of Lactic Acid from Molasses by Perfusion Culture of Lactococcus lactis Using a Stirred Ceramic Membrane Reactor. J. Biosci. Bioeng. 1999, 87, 647–654. DOI: 10.1016/S1389-1723(99)80129-7.
  • Coelho, L. F.; De Lima, C. J. B.; Rodovalho, C. M.; Bernardo, M. P.; Contiero, J. Lactic Acid Production by New Lactobacillus plantarum LMISM6 Grown in Molasses: Optimization of Medium Composition. Braz. J. Chem. Eng. 2011, 28, 27–36. DOI: 10.1590/S0104-66322011000100004.
  • Choi, G.; Kim, J.; Lee, C. Effect of Low PH Start-up on Continuous Mixed-Culture Lactic Acid Fermentation of Dairy Effluent. Appl. Microbiol. Biotechnol. 2016, 100, 10179–10191. DOI: 10.1007/s00253-016-7871-3.
  • Westman, J. O.; Franzén, C. J. Current Progress in High Cell Density Yeast Bioprocesses for Bioethanol Production. Biotechnol. J. 2015, 10, 1185–1195. DOI: 10.1002/biot.201400581.
  • Sawdekar, P. Improved Process Designs for Fermentative Production of Lactic Acid/Acetic Acids. Thesis, Institute of Chemical Technology, Mumbai. Approval of the Research Supervisor and the External Examiner, 2014; pp. 1–186.
  • Bustamante, D.; Tortajada, M.; Ramón, D.; Rojas, A. Production of D-Lactic Acid by the Fermentation of Orange Peel Waste Hydrolysate by Lactic Acid Bacteria. Fermentation 2019, 6, 1–12. DOI: 10.3390/fermentation6010001.
  • Alrefaey, H. M. A.; Abdel-Rahman, M. A.; Hassan, S. E. D.; El-Din, M. N.; Azab, M. S. Sequential Optimization of the Fermentation Factors with Integrating Seed Culture Adaptation for Increased Biorefinery of Beet Molasses to Lactic Acid. Biomass Conv. Bioref. 2021, 11, 1013–1028. DOI: 10.1007/s13399-020-00773-3.
  • Pawar, P. R.; Velani, S.; Kumari, S.; Lali, A. M.; Prakash, G. Isolation and Optimization of a Novel Thraustochytrid Strain for DHA Rich and Astaxanthin Comprising Biomass as Aquafeed Supplement. 3 Biotech 2021, 11, 1–10. DOI: 10.1007/s13205-020-02616-4.
  • Weiß, K.; Alt, M. Determination of Single Sugars, Including Inulin, in Plants and Feed Materials by High-Performance Liquid Chromatography and Refraction Index Detection. Fermentation 2017, 3, 36. DOI: 10.3390/fermentation3030036.
  • Mhatre, A.; Patil, S.; Agarwal, A.; Pandit, R.; Lali, A. M. Influence of Nitrogen Source on Photochemistry and Antenna Size of the Photosystems in Marine Green Macroalgae, Ulva Lactuca. Photosynth. Res. 2019, 139, 539–551. DOI: 10.1007/s11120-018-0554-4.
  • Pawar, P. R.; Rao, P.; Prakash, G.; Lali, A. M. Organic Waste Streams as Feedstock for the Production of High Volume-Low Value Products. Environ. Sci. Pollut. Res. Int. 2021, 28, 11904–11914. DOI: 10.1007/s11356-020-07985-0.
  • Tashiro, Y.; Kaneko, W.; Sun, Y.; Shibata, K.; Inokuma, K.; Zendo, T.; Sonomoto, K. Continuous D-Lactic Acid Production by a Novelthermotolerant Lactobacillus delbrueckii Subsp. Lactis QU 41. Appl. Microbiol. Biotechnol. 2011, 89, 1741–1750. DOI: 10.1007/s00253-010-3011-7.
  • Guo, Y.; Yan, Q.; Jiang, Z.; Teng, C.; Wang, X. Efficient Production of Lactic Acid from Sucrose and Corncob Hydrolysate by a Newly Isolated Rhizopus oryzae GY18. J. Ind. Microbiol. Biotechnol. 2010, 37, 1137–1143. DOI: 10.1007/s10295-010-0761-2.
  • Zhou, Y.; Domínguez, J. M.; Cao, N.; Du, J.; Tsao, G. T. Optimization of L-Lactic Acid Production from Glucose by Rhizopus oryzae ATCC 52311. Appl. Biochem. Biotechnol. - Part A Enzym. Eng. Biotechnol. 1999, 77–79, 401–407. DOI: 10.1007/978-1-4612-1604-9_37.
  • Srivastava, A. K.; Tripathi, A. D.; Jha, A.; Poonia, A.; Sharma, N. P. Optimization and Characterization of Lactic Acid by Lactobacillus delbrueckii NCIM 2025 from Utilizing Agro-Industrial Byproduct (Cane Molasses). J. Food. Sci. Technol. 2015, 52, 3571–3578. DOI: 10.1007/s13197-014-1423-6.
  • Farooq, U.; Anjum, F. M.; Zahoor, T.; Sajjad-Ur-Rahman; Randhawa, M. A.; Ahmed, A.; Akram, K. Optimization of Lactic Acid Production from Cheap Raw Material: Sugarcane Molasses. Pakistan J. Bot. 2012, 44, 333–338.
  • De Oliveira, R. A.; Filho, R. M.; Rossell, C. E. V. High Lactic Acid Production from Molasses and Hydrolysed Sugarcane Bagasse. Chem. Eng. Trans. 2016, 50, 307–312. DOI: 10.3303/CET1650052.
  • Xu, K.; Xu, P. Efficient Production of L-Lactic Acid Using Co-Feeding Strategy Based on Cane Molasses/Glucose Carbon Sources. Bioresour. Technol. 2014, 153, 23–29. DOI: 10.1016/j.biortech.2013.11.057.
  • Komesu, A.; Oliveira, J. A. R. d.; Martins, L. H. d S.; Wolf Maciel, M. R.; Maciel Filho, R. Lactic Acid Production to Purification: A Review. BioRes 2017, 12, 4364–4383. DOI: 10.15376/biores.12.2.Komesu.
  • Juturu, V.; Wu, J. C. Microbial Production of Lactic Acid: The Latest Development. Crit. Rev. Biotechnol. 2016, 36, 967–977. DOI: 10.3109/07388551.2015.1066305.
  • Dumbrepatil, A.; Adsul, M.; Chaudhari, S.; Khire, J.; Gokhale, D. Utilization of Molasses Sugar for Lactic Acid Production by Lactobacillus delbrueckii Subsp. Delbrueckii Mutant Uc-3 in Batch Fermentation. Appl. Environ. Microbiol. 2008, 74, 333–335. DOI: 10.1128/AEM.01595-07.
  • Johnson, M.; Burgess, N.; Shi, S.; Li, J.; Blersch, D. Formulation of Fish Waste as a Low-Cost Fermentative Nutrient for Lactic Acid Production by Lactobacillus pentosus. Waste Biomass Valor 2022, 13, 2917–2925. DOI: 10.1007/s12649-022-01705-0.
  • Abdel-Rahman, M. A.; Tashiro, Y.; Zendo, T.; Sonomoto, K. Improved Lactic Acid Productivity by an Open Repeated Batch Fermentation System Using Enterococcus mundtii QU 25. RSC Adv. 2013, 3, 8437–8445. DOI: 10.1039/c3ra00078h.
  • Gao, T.; Wong, Y.; Ng, C.; Ho, K. L-Lactic Acid Production by Bacillus subtilis MUR1. Bioresour. Technol. 2012, 121, 105–110. DOI: 10.1016/j.biortech.2012.06.108.
  • de la Torre, I.; Ladero, M.; Santos, V. E. Production of D-Lactic Acid by Lactobacillus delbrueckii ssp. Delbrueckii from Orange Peel Waste: Techno-Economical Assessment of Nitrogen Sources. Appl. Microbiol. Biotechnol. 2018, 102, 10511–10521. DOI: 10.1007/s00253-018-9432-4.
  • Wang, S.; Tian, R.; Liu, B.; Wang, H.; Liu, J.; Li, C.; Li, M.; Evivie, S. E.; Li, B. Effects of Carbon Concentration, Oxygen, and Controlled PH on the Engineering Strain Lactiplantibacillus casei E1 in the Production of Bioethanol from Sugarcane Molasses. AMB Express 2021, 11, 91. DOI: 10.1186/s13568-021-01257-x.
  • Bahry, H.; Abdalla, R.; Pons, A.; Taha, S.; Vial, C. Optimization of Lactic Acid Production Using Immobilized Lactobacillus rhamnosus and Carob Pod Waste from the Lebanese Food Industry. J. Biotechnol. 2019, 306, 81–88. DOI: 10.1016/j.jbiotec.2019.09.017.
  • Bhatt, S. M.; Srivastava, S. K. Lactic Acid Production from Cane Molasses by Lactobacillus delbrueckii NCIM 2025 in Submerged Condition: Optimization of Medium Component by Taguchi DOE Methodology. Food Biotechnol. 2008, 22, 115–139. DOI: 10.1080/08905430802043107.
  • Tripathi, A. D.; Srivastava, S. K.; Singh, P.; Singh, R. P.; Singh, S. P.; Jha, A.; Yadav, P. Optimization of Process Variables for Enhanced Lactic Acid Production Utilizing Paneer Whey as Substrate in SMF. Appl. Food Biotechnol. 2015, 2, 47–56. DOI: 10.22037/afb.v2i2.7612.
  • Zhou, X.; Ye, L.; Wu, J. C. Efficient Production of L-Lactic Acid by Newly Isolated Thermophilic Bacillus coagulans WCP10-4 with High Glucose Tolerance. Appl. Microbiol. Biotechnol. 2013, 97, 4309–4314. DOI: 10.1007/s00253-013-4710-7.
  • Kotzamanidis, C.; Roukas, T.; Skaracis, G. Optimization of Lactic Acid Production from Beet Molasses by Lactobacillus delbrueckii NCIMB 8130. World J. Microbiol. Biotechnol. 2002, 18, 441–448. DOI: 10.1023/A:1015523126741.
  • Romero-Garcia, S.; Hernández-Bustos, C.; Merino, E.; Gosset, G.; Martinez, A. Homolactic Fermentation from Glucose and Cellobiose Using Bacillus subtilis. Microb. Cell Fact 2009, 8, 23–28. DOI: 10.1186/1475-2859-8-23.
  • Pleissner, D.; Neu, A. K.; Mehlmann, K.; Schneider, R.; Puerta-Quintero, G. I.; Venus, J. Fermentative Lactic Acid Production from Coffee Pulp Hydrolysate Using Bacillus coagulans at Laboratory and Pilot Scales. Bioresour. Technol. 2016, 218, 167–173. DOI: 10.1016/j.biortech.2016.06.078.
  • Balakrishnan, R.; Tadi, S. R. R.; Pavan, A. S. S.; Sivaprakasam, S.; Rajaram, S. Effect of Nitrogen Sources and Neutralizing Agents on D-Lactic Acid Production from Kodo Millet Bran Hydrolysate: Comparative Study and Kinetic Analysis. J. Food Sci. Technol. 2020, 57, 915–926. DOI: 10.1007/s13197-019-04124-7.
  • Liang, S.; Jiang, W.; Song, Y.; Zhou, S. F. Improvement and Metabolomics-Based Analysis of d -Lactic Acid Production from Agro-Industrial Wastes by Lactobacillus delbrueckii Submitted to Adaptive Laboratory Evolution. J. Agric. Food Chem. 2020, 68, 7660–7669. DOI: 10.1021/acs.jafc.0c00259.
  • Gonçalves, L. M. D.; Xavier, A. M. R. B.; Almeida, J. S.; Carrondo, M. J. T. Concomitant Substrate and Product Inhibition Kinetics in Lactic Acid Production. Enzyme Microb. Technol. 1991, 13, 314–319. DOI: 10.1016/0141-0229(91)90150-9.
  • Oh, H.; Wee, Y. J.; Yun, J. S.; Ryu, H. W. Lactic Acid Production through Cell-Recycle Repeated-Batch Bioreactor. ABAB 2003, 107, 603–614. DOI: 10.1385/ABAB:107:1-3:603.
  • Tashiro, Y.; Takeda, K.; Kobayashi, G.; Sonomoto, K. High Production of Acetone-Butanol-Ethanol with High Cell Density Culture by Cell-Recycling and Bleeding. J. Biotechnol. 2005, 120, 197–206. DOI: 10.1016/j.jbiotec.2005.05.031.
  • Roy, T. B. V.; Mandel, D. K.; Dea, D. K.; Blanch, H. W.; Wilke, C. R. Lactic Acid Production by Lactobacillus delbruckii in Hollow Fiber Bioreactor. Biotechnol. Lett. 1983, 5, 665–670.
  • Kwon, S.; Yoo, I. K.; Lee, W. G.; Chang, H. N.; Chang, Y. K. High-Rate Continuous Production of Lactic Acid by Lactobacillus rhamnosus in a Two-Stage Membrane Cell-Recycle Bioreactor. Biotechnol. Bioeng. 2001, 73, 25–34. DOI: 10.1002/1097-0290(20010405)73:1 < 25::AID-BIT1033 > 3.0.CO;2-N.
  • Taleghani, H. G.; Ghoreyshi, A. A.; Najafpour, G. D. Lactic Acid Production with in Situ Extraction in Membrane Bioreactor. Appl. Food Biotechnol. 2017, 4, 27–34. DOI: 10.22037/afb.v4i1.13686.
  • Manandhar, A.; Shah, A. Techno-economic analysis of bio-based lactic acid production utilizing corn grain as feedstock. Processes 2020, 8, 199. DOI: 10.3390/pr8020199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.