420
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Optimization of medium composition of Lactobacillus plantarum Y44 using PlackettBurman and Box–Behnken designs

, , &

Reference

  • Wang, M.; Zhou, W.; Yang, Y.; Xing, J.; Xu, X.; Lin, Y. Potential Prebiotic Properties of Exopolysaccharides Produced by a Novel Lactobacillus Strain, Lactobacillus pentosus YY-112. Food Funct. 2021, 12, 9456–9465. DOI: 10.1039/d1fo01261d.
  • Ji, Y. J.; Kang, H. K.; Jin, H. M.; Han, S. S. Companilactobacillus pabuli sp. nov., a Lactic Acid Bacterium Isolated from Animal Feed. Int. J. Syst. Evol. Microbiol. 2019, 71(3), DOI: 10.1099/ijsem.0.004670.
  • Yang, S.-C.; Lin, C.-H.; Sung, C. T.; Fang, J.-Y. Antibacterial Activities of Bacteriocins: application in Foods and Pharmaceuticals. Front. Microbiol. 2014, 5, 683–3389. DOI: 10.3389/fmicb.2014.00683.
  • Tsuda, K.; Umemura, K.; Tsuji, G. Development of Biopesticide Using Lactic Acid Bacteria Lactobacillus plantarum. Sleep Med. 2015, 40, 12–16. DOI: 10.1584/jpestics.W14-40.
  • Ag, A.; Ff, B.; Fg, A.; Sz, B.; Ff, A. Effects of Several Lactic Acid Bacteria Inoculants on Fermentation and Mycotoxins in Corn Silage. Anim. Feed Sci. Technol. 2021, 277, 114962. DOI: 10.1016/j.anifeedsci.2021.114962.
  • B, M.; B, E. E. V.; C, M. K. A. Lactobacillus plantarum—Survival, Functional and Potential Probiotic Properties in the Human Intestinal Tract. Int. Dairy J. 2006, 16, 1018–1028. DOI: 10.1016/j.idairyj.2005.09.003.
  • Zhao, L.; Xie, Q.; Shi, F.; Liang, S.; Chen, Q.; Evivie, S.; Qiu, J.; Li, B.; Huo, G. Proteolytic Activities of Combined Fermentation with Lactobacillus helveticus KLDS 1.8701 and Lactobacillus plantarum KLDS 1.0386 Reduce Antigenic Response to Cow Milk Proteins. J. Dairy Sci. 2021, 104, 11499–11508. DOI: 10.3168/jds.2021-20668.
  • Smits, H. H.; Engering, A.; van der Kleij, D.; de Jong, E. C.; Schipper, K.; van Capel, T. M. M.; Zaat, B. A. J.; Yazdanbakhsh, M.; Wierenga, E. A.; van Kooyk, Y.; Kapsenberg, M. L. Selective Probiotic Bacteria Induce IL-10-Producing Regulatory T Cells in Vitro by Modulating Dendritic Cell Function through Dendritic Cell-Specific Intercellular Adhesion Molecule 3-Grabbing Nonintegrin. J. Allergy Clin. Immunol. 2005, 115, 1260–1267. DOI: 10.1016/j.jaci.2005.03.036.
  • Gatesoupe, F.-J. Lactic Acid Bacteria Increase the Resistance of Turbot Larvae, Scophthalmus maximus, against Pathogenic Vibrio. Aquat. Living Resour. 1994, 7, (4, ), 277–282. DOI: 10.1051/alr:1994030.
  • Ivana, L.; Gabriela, K.; Libor, K.; Alexandra, A.; Jiřina, B.; Ladislav, Č. The Immunomodulatory Effect of Lactobacillus plantarum Strains on Mononuclear Cells Isolated from Human Peripheral Blood. Afr. J. Microbiol. Res. 2014, 8, 1970–1973. DOI: 10.5897/AJMR2014.6744.
  • Li, C.; Nie, S.-P.; Ding, Q.; Zhu, K.-X.; Wang, Z.-J.; Xiong, T.; Gong, J.; Xie, M.-Y. Cholesterol-Lowering Effect of Lactobacillus plantarum NCU116 in a Hyperlipidaemic Rat Model. J. Funct. Foods 2014, 8, 340–347. DOI: 10.1016/j.jff.2014.03.031.
  • Mileti, E.; Matteoli, G.; Iliev, I. D.; Rescigno, M. Comparison of the Immunomodulatory Properties of Three Probiotic Strains of Lactobacilli Using Complex Culture Systems: Prediction for in Vivo Efficacy. PLoS One 2009, 4, e7056. DOI: 10.1371/journal.pone.0007056.
  • Mu, G.; Gao, Y.; Tuo, Y.; Li, H.; Zhang, Y.; Qian, F.; Jiang, S. Assessing and Comparing Antioxidant Activities of Lactobacilli Strains by Using Different Chemical and Cellular Antioxidant Methods. J. Dairy Sci. 2018, 101, 10792–10806. DOI: 10.3168/jds.2018-14989.
  • Mu, G.; Li, H.; Tuo, Y.; Gao, Y.; Zhang, Y. Antioxidative Effect of Lactobacillus plantarum Y44 on 2,2′-Azobis(2-Methylpropionamidine) Dihydrochloride (ABAP)-Damaged Caco-2 Cells. J. Dairy Sci. 2019, 102, 6863–6875. DOI: 10.3168/jds.2019-16447.
  • Hayek, S. A.; Gyawali, R.; Aljaloud, S. O.; Krastanov, A. Cultivation Media for Lactic Acid Bacteria Used in Dairy Products. J. Dairy Res. 2019, 86, 1–13. DOI: 10.1017/S002202991900075X.
  • Tian, Y.; Fan, Y.; Zhao, X.; Zhang, J. Optimization of Fermentation Medium for Acetoin Production by Bacillus subtilis SF4-3 Using Statistical Methods. Prep. Biochem. 2014, 44, 529–543. DOI: 10.1080/10826068.2013.835731.
  • Zhang, S.; Gan, Y.; Liu, J.; Zhou, J.; Xu, B. Optimization of the Fermentation Media and Parameters for the Bio-Control Potential of Trichoderma longibrachiatum T6 against Nematodes. Front. Microbiol. 2020, 11, 574601.: DOI: 10.3389/fmicb.2020.574601.
  • Todorov, S. D.; van Reenen, C. A.; Dicks, L. M. Optimization of Bacteriocin Production by Lactobacillus plantarum ST13BR, a Strain Isolated from Barley Beer. J. Gen. Appl. Microbiol. 2004, 50, 149–157. DOI: 10.2323/jgam.50.149.
  • Coelho, L. F.; De, L.; Rodovalho, C. M.; Bernardo, M. P.; Contiero, J. Lactic Acid Production by New Lactobacillus plantarum LMISM6 Grown in Molasses: Optimization of Medium Composition. Braz. J. Chem. Eng. 2011, 28, 27–36. DOI: 10.1590/S0104-66322011000100004.
  • Panda, S. H.; Swain, M. R.; Kar, S.; Ray, R. C. Statistical Optimization of Alpha-Amylase Production by Probiotic Lactobacillus plantarum MTCC 1407 in Submerged Fermentation. Pol. J. Microbiol. 2011, 57, 149–155. DOI: 10.1371/journal.ppat.0040014.
  • Lu, X.; Zhaomin Li, L, Zhang, F. Optimization of the Culture Medium Element and Fermentation Conditions of Bifidobacterium bifidum. Food Fermentat. Ind. 2010, 36, 89–92.
  • Slivinski, C. T.; Mallmann, E.; de Araújo, J. M.; Mitchell, D. A.; Krieger, N. Production of Surfactin by Bacillus pumilus UFPEDA 448 in Solid-State Fermentation Using a Medium Based on Okara with Sugarcane Bagasse as a Bulking Agent. Process Biochem. 2012, 47, 1848–1855. DOI: 10.1016/j.procbio.2012.06.014.
  • Juwaied, A. A.; Abdulamier, A.; Al-Amiery, H.; Abdumuniem, Z.; Anaam, U. Optimization of Cellulase Production by Aspergillus niger and Tricoderma viride Using Sugar Cane Waste. J. Yeast Fungal Rese. 2011, 2(2), 19–23. DOI: 10.5897/JYFR.9000039.
  • Hoffmann, T. G.; Ronzoni, A. F.; Silva, D.; Bertoli, S. L.; Souza, C. Cooling Kinetics and Mass Transfer in Postharvest Preservation of Fresh Fruits and Vegetables under Refrigerated Conditions. Chem. Eng. Trans. 2021, 87, 115. DOI: 10.3303/CET2187020.
  • Law, S. E.; Cooper, S. C. Air-Assisted Electrostatic Sprays for Postharvest Control of Fruit and Vegetable Spoilage Microorganisms. IEEE Trans. Ind. Appl. 2001, 37, 1597–1602. DOI: 10.1109/28.968166.
  • Valpiani, N.; Wilde, P.; Rogers, B.; Stewart, H. Patterns of Fruit and Vegetable Availability and Price Competitiveness across Four Seasons Are Different in Local Food Outlets and Supermarkets. Public Health Nutr. 2015, 18, 2846–2854. DOI: 10.1017/S1368980015000981.
  • Abalos, A.; Maximo, F.; Manresa, M. A. Utilization of Response Surface Methodology to Optimize the Culture Media for the Production of Rhamnolipids by Pseudomonas aeruginosa AT10. J. Chem. Technol. Bioeng. 2010, 77, 777–784. DOI: 10.1002/jctb.637.
  • Rodríguez, J. M.; Martínez, M. I.; Suárez, A. M.; Martínez, J. M.; Hernández, P. E. Research Note: Unsuitability of the MRS Medium for the Screening of Hydrogen Peroxide-Producing Lactic Acid Bacteria. Lett. Appl. Microbiol. 1997, 25, 73–74. DOI: 10.1046/j.1472-765X.1997.00177.x.
  • Dong, Z.; Gu, L.; Zhang, J.; Wang, M.; Du, G.; Chen, J. Optimisation for High Cell Density Cultivation of Lactobacillus salivarius BBE 09-18 with Response Surface Methodology. Int. Dairy J. 2014, 34, 230–236. DOI: 10.1016/j.idairyj.2013.07.015.
  • Vaessen, E.; Kemme, H. A.; Timmermans, R.; Schutyser, M.; Besten, H. Temperature and Presence of Ethanol Affect Accumulation of Intracellular Trehalose in Lactobacillus plantarum WCFS1 upon Pulsed Electric Field Treatment. Bioelectrochemistry 2021, 137, 107680.: DOI: 10.1016/j.bioelechem.2020.107680.
  • Nigatu, A.; Ahrné, S.; Molin, G. Temperature-Dependent Variation in API 50 CH Fermentation Profiles of Lactobacillus Species. Curr. Microbiol. 2000, 41, 21–26. DOI: 10.1007/s002840010085.
  • Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An Overview of Foodborne Pathogen Detection: In the Perspective of Biosensors. Biotechnol. Adv. 2010, 28, 232–254. DOI: 10.1016/j.biotechadv.2009.12.004.
  • Jingjing, E.; Lili, M.; Zichao, C.; Rongze, M.; Qiaoling, Z.; Ruiyin, S.; Zongbai, H.; Junguo, W. Effects of Buffer Salts on the Freeze-Drying Survival Rate of Lactobacillus plantarum LIP-1 Based on Transcriptome and Proteome Analyses. Food Chem. 2020, 326, 126849. DOI: 10.1016/j.foodchem.2020.126849.
  • Gang, W.; Yang, M.; Yu, H. Q. Response Surface Analysis to Evaluate the Influence of pH, Temperature and Substrate Concentration on the Acidogenesis of Sucrose-Rich Wastewater. Biochem. Eng. J. 2005, 23, 175–184. DOI: 10.1016/j.bej.2005.01.002.
  • Wang, J.; Chen, L. Impact of a Novel Nano-Protectant on the Viability of Probiotic Bacterium Lactobacillus casei K17. Foods 2021, 10, 529. DOI: 10.3390/foods10030529.
  • Vigants, A.; Zikmanis, P.; Bekers, M. Sucrose Medium Osmolality as a Regulator of Anabolic and Catabolic Parameters in Zymomonas Culture. Acta Biotechnol. 1996, 16, 321–327.
  • Yan, Z.; Yun, F.; Qianqian, T. Fermentation Regulation of DHA Production by Schizochytrium sp. Based on Osmotic Pressure. Chin. J. Bioprocess Eng. 2012, 10, 24–28. DOI: 10.3969/j.issn.1672-3678.2012.06.005.
  • Yina, S.; Minghui, L.; Qiwen, H. Cryoprotective Effect of Medium Components on Lactobacillus plantarum LIP-1. J. Dairy Sci. Technol. 2018, 41, 8. DOI: 10.15922/j.cnki.jdst.2018.06.004.
  • Law, B. A.; Sezgin, E.; Sharpe, M. E. Amino Acid Nutrition of Some Commercial Cheese Starters in Relation to Their Growth in Peptone-Supplemented Whey Media. J. Dairy Res. 1976, 43, 291–300. DOI: 10.1017/S0022029900015855.
  • AnLi, D. Study on High Cell Density Culture of Lactococcus lactis subsp.lactis BL19. College of Food Science and Engineering. Inner Mongolia Agricultural University. 2019, 17–19.
  • Li, X.; Li, Z.; Zheng, J.; Shi, Z.; Li, L. Yeast Extract Promotes Phase Shift of Bio-Butanol Fermentation by Clostridium acetobutylicum ATCC824 Using Cassava as Substrate. Bioresour. Technol. 2012, 125, 43–51. DOI: 10.1016/j.biortech.2012.08.056.
  • Jin, L.; Son, Y.; Yoon, T. K.; Kang, Y. J.; Kim, W.; Chung, H. High Concentrations of Single-Walled Carbon Nanotubes Lower Soil Enzyme Activity and Microbial Biomass. Ecotoxicol. Environ. Saf. 2013, 88, 9–15. DOI: 10.1016/j.ecoenv.2012.10.031.
  • Heryani, H.; Putra, M. D. Kinetic Study and Modeling of Biosurfactant Production Using Bacillus sp. Electron. J. Biotechnol. 2017, 27, 49–54. DOI: 10.1016/j.ejbt.2017.03.005.
  • Ding, B.; Jia-Li, L. V. Research on Culture Lactobacillus by the Method of Embed Buffer Salt. Sci. Technol. Food Ind. 2008, (06), 132–133. DOI: 10.13386/j.issn1002-0306.2008.06.037.
  • Abbasi, A.; Bothun, G. D.; Bose, A. Attachment of Alcanivorax borkumensis to Hexadecane-in-Artificial Sea Water Emulsion Droplets. Langmuir 2018, 34, 5352–5357. DOI: 10.1021/acs.langmuir.8b00082.
  • Chauhan, K.; Trivedi, U.; Patel, K. C. Statistical Screening of Medium Components by Plackett-Burman Design for Lactic Acid Production by Lactobacillus sp KCP01 Using Date Juice. Bioresour. Technol. 2007, 98, 98–103. DOI: 10.1016/j.biortech.2005.11.017.
  • Dubey, M. K.; Meena, M.; Aamir, M. Regulation and Role of Metal Ions in Secondary Metabolite Production by Microorganisms. In New Future Developments in Microbial Biotechnology Bioengineering, Gupta, V. K.; Pandey, A., Eds.; Elsevier: Amsterdam. 2019, 259–277. DOI: 10.1016/B978-0-444-63504-4.00019-0.
  • Ismail, W.; Shammary, S. A.; El-Sayed, W. S. Stimulation of Rhamnolipid Biosurfactants Production in Pseudomonas aeruginosa AK6U by Organosulfur Compounds Provided as Sulfur Sources. Biotechnol. Rep. 2015, 7, 55–63. DOI: 10.1016/j.btre.2015.03.001.
  • Praharyawan, S.; Susilaningsih, D.; Syamsu, K. Statistical Screening of Medium Components by Plackett-Burman Experimental Design for Biosurfactant Production by Indonesia Indigenous Bacillus SPDSW17. Biotechnol. Environ. Sci. 2013, 15, 805–813.
  • Bukhari, S. I.; Al-Agamy, M. H.; Kelany, M. S.; Hazani, M.; Hamed, M. M. Production Optimization Using Plackett-Burman and Box-Behnken Designs with Partial Characterization of Amylase from Marine Actinomycetes. Biomed Res. Int. 2021, 2021, 1–6. DOI: 10.21203/rs.3.rs-169538/v1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.