128
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effects of various pine needle extracts on Chinese hamster ovary cell growth and monoclonal antibody quality

ORCID Icon, , , , , & show all

References

  • Ritacco, F. v.; Wu, Y.; Khetan, A. Cell Culture Media for Recombinant Protein Expression in Chinese Hamster Ovary (CHO) Cells: History, Key Components, and Optimization Strategies. Biotechnol. Prog. 2018, 34, 1407–1426. DOI: 10.1002/btpr.2706.
  • Blondeel, E. J. M.; Ho, R.; Schulze, S.; Sokolenko, S.; Guillemette, S. R.; Slivac, I.; Durocher, Y.; Guillemette, J. G.; McConkey, B. J.; Chang, D.; et al. An Omics Approach to Rational Feed: Enhancing Growth in CHO Cultures with NMR Metabolomics and 2D-DIGE Proteomics. J. Biotechnol. 2016, 234, 127–138. DOI: 10.1016/j.jbiotec.2016.07.027.
  • Pérez-Rodriguez, S.; Ramírez-Lira, M. d J.; Trujillo-Roldán, M. A.; Valdez-Cruz, N. A. Nutrient Supplementation Strategy Improves Cell Concentration and Longevity, Monoclonal Antibody Production and Lactate Metabolism of Chinese Hamster Ovary Cells. Bioengineered 2020, 11, 463–471. DOI: 10.1080/21655979.2020.1744266.
  • Reinhart, D.; Damjanovic, L.; Kaisermayer, C.; Sommeregger, W.; Gili, A.; GaSSelhuber, B.; Castan, A.; Mayrhofer, P.; Grünwald-Gruber, C.; Kunert, R. Bioprocessing of Recombinant CHO-K1, CHO-DG44, and CHO-S: CHO Expression Hosts Favor Either MAb Production or Biomass Synthesis. Biotechnol. J. 2019, 14, 1700686. DOI: 10.1002/biot.201700686.
  • Ghaffari, N.; Jardon, M. A.; Krahn, N.; Butler, M.; Kennard, M.; Turner, R. F. B.; Gopaluni, B.; Piret, J. M. Effects of Cysteine, Asparagine, or Glutamine Limitations in Chinese Hamster Ovary Cell Batch and Fed-Batch Cultures. Biotechnol. Prog. 2020, 36. DOI: 10.1002/btpr.2946.
  • Chun, B. H.; Kim, J. H.; Lee, H. J.; Chung, N. Usability of Size-Excluded Fractions of Soy Protein Hydrolysates for Growth and Viability of Chinese Hamster Ovary Cells in Protein-Free Suspension Culture. Bioresour. Technol. 2007, 98, 1000–1005. DOI: 10.1016/j.biortech.2006.04.012.
  • Torkashvand, F.; Vaziri, B.; Maleknia, S.; Heydari, A.; Vossoughi, M.; Davami, F.; Mahboudi, F. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody. PLOS One 2015, 10, e0140597. DOI: 10.1371/journal.pone.0140597.
  • Kochanowski, N.; Siriez, G.; Roosens, S.; Malphettes, L. Medium and Feed Optimization for Fed-Batch Production of a Monoclonal Antibody in CHO Cells. BMC Proc. 2011, 5. DOI: 10.1186/1753-6561-5-S8-P75.
  • Pan, X.; Streefland, M.; Dalm, C.; Wijffels, R. H.; Martens, D. E. Selection of Chemically Defined Media for CHO Cell Fed-Batch Culture Processes. Cytotechnology 2017, 69, 39–56. DOI: 10.1007/s10616-016-0036-5.
  • Ha, T. K.; Kim, D.; Kim, C. L.; Grav, L. M.; Lee, G. M. Factors Affecting the Quality of Therapeutic Proteins in Recombinant Chinese Hamster Ovary Cell Culture. Biotechnol. Adv. 2022, 54, 107831. DOI: 10.1016/j.biotechadv.2021.107831.
  • Li, B.; Shen, Y.-H.; He, Y.-R.; Zhang, W.-D. Chemical Constituents and Biological Activities of Pinus Species. Chem. Biodivers. 2013, 10, 2133–2160.
  • Xiao, Y. C.; Shi, Z. F.; Yan, C. Q.; Tang, Q. X.; Zhao, M. X.; Liu, L. T.; Huang, Q. S.; Ye, L.; Xu, K.; Ke, X. Isolation, X-Ray Crystal Structure of the New Diterpene and Identification of Others Lignans and Flavonoids from the Fresh Needles of Pinus Massoniana. J. Asian Nat. Prod. Res. 2020, 22, 707–715. DOI: 10.1080/10286020.2019.1642331.
  • Park, J.; Lee, B.; Choi, H.; Kim, W.; Kim, H. J.; Cheong, H. Antithrombosis Activity of Protocatechuic and Shikimic Acids from Functional Plant Pinus densiflora Sieb. et Zucc Needles. J. Nat. Med. 2016, 70, 492–501. DOI: 10.1007/s11418-015-0956-y.
  • Dziedziński, M.; Kobus-Cisowska, J.; Stachowiak, B. Pinus Species as Prospective Reserves of Bioactive Compounds with Potential Use in Functional Food—Current State of Knowledge. Plants 2021, 10, 1306. DOI: 10.3390/plants10071306.
  • Kuo, P. C.; Li, Y. C.; Kusuma, A. M.; Tzen, J. T. C.; Hwang, T. L.; Ye, G. H.; Yang, M. L.; Wang, S. Y. Anti-Inflammatory Principles from the Needles of Pinus taiwanensis Hayata and In Silico Studies of Their Potential Anti-Aging Effects. Antioxidants 2021, 10, 598. DOI: 10.3390/antiox10040598.
  • Koutsaviti, A.; Toutoungy, S.; Saliba, R.; Loupassaki, S.; Tzakou, O.; Roussis, V.; Ioannou, E. Antioxidant Potential of Pine Needles: A Systematic Study on the Essential Oils and Extracts of 46 Species of the Genus Pinus. Foods 2021, 10, 142. DOI: 10.3390/foods10010.
  • Chu, L.; Yang, L.; Lin, L.; Wei, J.; Wang, N.; Xu, M.; Qiao, G.; Zheng, G. Chemical Composition, Antioxidant Activities of Polysaccharide from Pine Needle (Pinus massoniana) and Hypolipidemic Effect in High-Fat Diet-Induced Mice. Int. J. Biol. Macromol. 2019, 125, 445–452. DOI: 10.1016/j.ijbiomac.2018.12.082.
  • Urquiza, L. T.; James, D. C.; Nagy, T.; Falconer, R. J. Screening Naturally Occurring Phenolic Antioxidants for Their Suitability as Additives to CHO Cell Culture Media Used to Produce Monoclonal Antibodies. Antioxidants 2019, 8, 159. DOI: 10.3390/antiox8060159.
  • Hossler, P.; Racicot, C.; Chumsae, C.; McDermott, S.; Cochran, K. Cell Culture Media Supplementation of Infrequently Used Sugars for the Targeted Shifting of Protein Glycosylation Profiles. Biotechnol. Prog. 2017, 33, 511–522. DOI: 10.1002/btpr.2429.
  • Hossler, P.; Wang, M.; Mcdermott, S.; Racicot, C.; Chemfe, K.; Zhang, Y.; Chumsae, C.; Manuilov, A. Cell Culture Media Supplementation of Bioflavonoids for the Targeted Reduction of Acidic Species Charge Variants on Recombinant Therapeutic Proteins. Biotechnol. Prog. 2015, 31, 1039–1052. DOI: 10.1002/btpr.2095.
  • Ho, S. C. L.; Nian, R.; Woen, S.; Chng, J.; Zhang, P.; Yang, Y. Impact of Hydrolysates on Monoclonal Antibody Productivity, Purification and Quality in Chinese Hamster Ovary Cells. J. Biosci. Bioeng. 2016, 122, 499–506. DOI: 10.1016/j.jbiosc.2016.03.003.
  • Du, Y.; Walsh, A.; Ehrick, R.; Xu, W.; May, K.; Liu, H. Chromatographic Analysis of the Acidic and Basic Species of Recombinant Monoclonal Antibodies. mAbs 2012, 4, 578–585. DOI: 10.4161/mabs.21328.
  • Torkashvand, F.; Vaziri, B. Main Quality Attributes of Monoclonal Antibodies and Effect of Cell Culture Components. Iran Biomed. J. 2017, 21, 131–141. DOI: 10.18869/acadpub.ibj.21.3.131.
  • Wright, A.; Morrison, S. L. Effect of Glycosylation on Antibody Function: Implications for Genetic Engineering. Trends Biotechnol. 1997, 15, 26–32. DOI: 10.1016/S0167-7799(96)10062-7
  • Keck, R.; Nayak, N.; Lerner, L.; Raju, S.; Ma, S.; Schreitmueller, T.; Chamow, S.; Moorhouse, K.; Kotts, C.; Jones, A. Characterization of a Complex Glycoprotein Whose Variable Metabolic Clearance in Humans is Dependent on Terminal N-Acetylglucosamine Content. Biologicals 2008, 36, 49–60. DOI: 10.1016/j.biologicals.2007.05.004.
  • Tebbey, P. W.; Varga, A.; Naill, M.; Clewell, J.; Venema, J. Consistency of Quality Attributes for the Glycosylated Monoclonal Antibody Humira® (Adalimumab). mAbs 2015, 7, 805–811. DOI: 10.1080/19420862.2015.1073429.
  • Brühlmann, D.; Muhr, A.; Parker, R.; Vuillemin, T.; Bucsella, B.; Kalman, F.; Torre, S.; la Neve, F.; Lembo, A.; Haas, T.; et al. Cell Culture Media Supplemented with Raffinose Reproducibly Enhances High Mannose Glycan Formation. J. Biotechnol. 2017, 252, 32–42. DOI: 10.1016/j.jbiotec.2017.04.026.
  • Chung, C. Y.; Wang, Q.; Yang, S.; Ponce, S. A.; Kirsch, B. J.; Zhang, H.; BeteNBaugh, M. J. Combinatorial Genome and Protein Engineering Yields Monoclonal Antibodies with Hypergalactosylation from CHO Cells. Biotechnol. Bioeng. 2017, 114, 2848–2856. DOI: 10.1002/bit.26375.
  • Grainger, R. K.; James, D. C. CHO Cell Line Specific Prediction and Control of Recombinant Monoclonal Antibody N-Glycosylation. Biotechnol. Bioeng. 2013, 110, 2970–2983. DOI: 10.1002/bit.24959.
  • Pande, S.; Rahardjo, A.; Livingston, B.; Mujacic, M. Monensin, a Small Molecule Ionophore, Can Be Used to Increase High Mannose Levels on Monoclonal Antibodies Generated by Chinese Hamster Ovary Production Cell-Lines. Biotechnol. Bioeng. 2015, 112, 1383–1394. DOI: 10.1002/bit.25551/abstract.
  • Gramer, M. J.; Eckblad, J. J.; Donahue, R.; Brown, J.; Shultz, C.; Vickerman, K.; Priem, P.; van den Bremer, E. T. J.; Gerritsen, J.; van Berkel, P. H. C. Modulation of Antibody Galactosylation through Feeding of Uridine, Manganese Chloride, and Galactose. Biotechnol. Bioeng. 2011, 108, 1591–1602. DOI: 10.1002/bit.23075.
  • Jefferis, R. Glycosylation as a Strategy to Improve Antibody-Based Therapeutics. Nat. Rev. Drug Discov. 2009, 8, 226–234. DOI: 10.1038/nrd2804.
  • Liu, L. Antibody Glycosylation and Its Impact on the Pharmacokinetics and Pharmacodynamics of Monoclonal Antibodies and Fc-Fusion Proteins. J. Pharma. Sci. 2015, 104, 1866–1884. DOI: 10.1002/jps.24444.
  • Hossler, P.; Khattak, S. F.; Li, Z. J. Optimal and Consistent Protein Glycosylation in Mammalian Cell Culture. Glycobiology 2009, 19, 936–949. DOI: 10.1093/glycob/cwp079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.