211
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Engineered Alcaligenes sp. by chemical mutagen produces thermostable and acido-alkalophilic endo-1,4-β-mannanases for improved industrial biocatalyst

, , ORCID Icon &

References

  • Olaniyi, O. O.; Arotupin, D. J.; Akinyele, B. J.; Bamidele, O. S. Kinetic properties of Purified β-Mannanase from Penicillium italicum. Br. Microbiol. Res. J. 2014, 4, 1092–1104.
  • Regmi, S.; Yoo, H. Y.; Choi, Y. H.; Choi, Y. S.; Yoo, J. C.; Kim, S. W. Prospects for Bio-Industrial Application of an Extremely Alkaline Mannanase from Bacillus subtilis Subsp. inaquosorum CSB31. Biotechnol. J. 2017, 12, 1700113.
  • Srivastava, P. K.; Kapoor, M. Production, Properties, and Applications of Endo-β-Mannanases. Biotechnol. Ad. 2017, 35, 1–19.
  • Dawood, A.; Ma, K. Applications of Microbial β-Mannanases. Front. Bioeng. Biotechnol. 2020, 8, 598630. DOI: 10.3389/fbioe.2020.598630.
  • Wang, Y.; Azhar, S.; Gandini, R.; Divne, C.; Ezcurra, I.; Aspeborg, H. Biochemical characterization of the Novel Endo-β-Mannanase at Man5-2 from Arabidopsis thaliana. Plant. Sci. 2015, 241, 151–163.
  • Jana, U. K.; Suryawanshi, R. K.; Prajapati, B. P.; Soni, H.; Kango, N. Production, Optimization and Characterization of Mannooligosaccharide Generating β-Mannanase from Aspergillus oryzae. Bioresour. Technol. 2018, 268, 308–314. DOI: 10.1016/j.biortech.2018.07.143.
  • Ismail, S. A.; Hassan, A. A.; Emran, M. A. Economic production of Thermo-Active Endo β-Mannanase for the Removal of Food Stain and Production of Antioxidant Manno-Oligosaccharides. Biocatal. Agric. Biotechnol. 2019, 22, 101387.
  • Liu, Z.; Ning, C.; Yuan, M.; Yang, S.; Wei, X.; Xiao, M.; Fu, X.; Zhu, C.; Mou, H. High-Level Expression of a Thermophilic and Acidophilic β-Mannanase from Aspergillus Kawachii IFO 4308 with Significant Potential in Mannooligosaccharide Preparation. Bioresour. Technol. 2020, 295, 122257.
  • Badejo, A. O.; Olaniyi, O. O.; Ayodeji, A. O.; Lawal, O. T. Biochemical properties of Partially Purified Surfactant-Tolerant Alkalophilic Endo Beta-1,4 Xylanase and Acidophilic Beta-Mannanase from Bacteria Resident in Ruminants’ Guts. Biocatal. Agric. Biotechnol. 2021, 34, 101982.
  • Sahin, E. Synthesis of Enantiopure (S)-6-Chlorochroman-4-ol Using Whole-Cell Lactobacillus paracasei Biotransformation. Chirality 2020, 32(3): 400–406.
  • İspirli, H.; Colquhoun, I. J.; Şahin, E.; Sağdıç, O.; Dertli, E. Preparation of Gentiobiose-Derived Oligosaccharides by Glucansucrase E81 and Determination of Prebiotic and Immunemodulatory Functions. Carbohydrate Res. 2019, 486, 7837. doi: 10.1016/j.carres.2019.107837
  • Yılmaz, D.; Sahin, E.; Dertli, E. Highly Enantioselective Production of Chiral Secondary Alcohols Using Lactobacillus paracasei BD101 as a New Whole Cell Biocatalyst and Evaluation of Their Antimicrobial Effects. Chem. Biodivers. 2017, 14, e1700269.
  • Baydaş, Y.; Dertli, E.; Şahin, E. Green synthesis of Chiral Aromatic Alcohols with Lactobacillus kefiri P2 as a Novel Biocatalyst. Synth. Commun. 2020, 50, 1035–1045. DOI: 10.1080/00397911.2020.1729809.
  • Kalay, E.; Sahin, E. Regioselective asymmetric Bioreduction of Trans-4-Phenylbut-3-en-2-One by Whole-Cell of Weissella cibaria N9 Biocatalyst. Chirality 2021a, 33(9): 535–542.
  • Soni, H.; Kango, N. 2013. Microbial Mannanases: Properties and Applications. Springer India, New Delhi, India, 2013; pp. 41–56.
  • Zhao, D.; Zhang, X.; Wang, Y.; Na, J.; Ping, W.; Ge, J. Purification, Biochemical and Secondary Structural Characterization of β-Mannanase from Lactobacillus casei HDS-01 and Juice Clarification Potential. Int J Biol Macromol 2020, 154, 826–834.
  • David, A.; Singh, C. P.; Kumar, A.; Angural, S.; Kumar, D.; Puri, N.; Gupta, N. Coproduction of Protease and Mannanase from Bacillus nealsonii PN-11 in Solid State Fermentation and Their Combined Application as Detergent Additives. Int J Biol Macromol 2018, 108, 1176–1184.
  • Nadaroglu, H.; Adiguzel, G.; Adiguzel, A.; Sonmez, Z. A thermostable‑Endo‑β‑(1,4)‑Mannanase from Pediococcus acidilactici (M17): Purification, Characterization and Its Application in Fruit Juice Clarification. Eur. Food Res. Technol. 2016, 243, 193–201. DOI: 10.1007/s00217-016-2735-8.
  • Titapoka, S.; Keawsompong, S.; Haltrich, D.; Nitisinprasert, S. Selection and Characterization of Mannanase-Producing Bacteria Useful for the Formation of Prebiotic Mannooligosaccharides from Copra Meal. World J. Microbiol. Biotechnol. 2008, 24, 1425–1433.
  • Zhang, W.; Liu, Z.; Zhou, S.; Mou, H.; Zhang, R. Cloning and Expression of a β-Mannanase Gene from Bacillus sp. MK-2 and Its Directed Evolution by Random Mutagenesis. Enzyme Microb. Technol. 2019, 124, 70–78.
  • Olaniyi, O. O.; Akinyele, B. J. Influence of UV Mutagenesis on β-Mannanase Production Potential of Aspergillus Glaucaus and Rhizopus Japonicus. Br. Microbiol. Res. J. 2014, 5, 466–473.
  • Oyedele, S. A.; Ayodeji, A. O.; Bamidele, O. S.; Ajele, J. O.; Fabunmi, T. B. Enhanced lipolytic Activity Potential of Mutant Bacillus niacini EMB-5 Grown on Palm Oil Mill Effluent (POME) and Biochemical Characterization of Purified Lipase. Biocatal. Agric. Biotechnol. 2019, 18, 101017.
  • Femi-Ola, T. O. Regulatory mutations Affecting the Synthesis of Cellulase in Bacillus pumilus. J. Pure Appl. Microbiol. 2008, 2, 181–186.
  • Mehmood, M. A.; Shahid, A.; Xiong, L.; Ahmad, N.; Liu, C.; Bai, F.; Zhao, X. Development of Synthetic Microbial Platforms to Convert Lignocellulosic Biomass to Biofuels. Adv. Bioenergy 2017, 2, 233–278.
  • Kalim, B.; Ali, M. N. Optimization of Fermentation Media and Growth Conditions for Microbial Xylanase Production. Biotechnol 2016, 6, 122.
  • Holt, J. G.; Krieg, N. R.; Sneath, P. H. A.; Staley, J. T.; Williams, S. T. Bergey’s Manual of Determinative Bacteriology, 9th ed.; Williams and Wilkins, Baltimore; 1994; pp. 543.
  • Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugars. Anal. Chem. 1959, 31, 426–428.
  • Adiguzel, G.; Sonmez, Z.; Adiguzel, A.; Nadaroglu, H. Purification and Characterization of a Thermostable Endo-Beta-1, 4 Mannanase from Weissella viridescens LB37 and Its Application in Fruit Juice Clarification. Eur. Food Res. Technol. 2016, 242, 769–776.
  • Bradford, M. A. Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.
  • Vimal, J.; Venu, A.; Joseph, J. Isolation and Identification of Cellulose Degrading Bacteria and Optimization of the Cellulase Production. IJRBS 2016, 5, 58–67.
  • Olaniyi, O. O.; Li, H.-Z.; Zhu, Y.-G.; Cui, L. Metabolic responses of Indigenous Bacteria Derived from Chicken Faeces and Maggot to Multiple Antibiotics via Heavy Water Labeled Single-Cell Raman Spectroscopy. J. Environ. Sci. 2022a, 113, 394–402.
  • Nadaroglu, H.; Tasgin, E. Purification and Characterization of Laccase from Lactarius Volemus and Its Application of Removal Phenolic Compounds from Some Fruit Juices. J. Food Agric. Environ. 2013, 11, 109–114.
  • Saribuga, E.; Nadaroglu, H.; Dikbas, N.; Senol, M.; Cetin, B. Partial purification, Characterization of Phytase Enzyme from Lactobacillus plantarum Bacteria and Determination of Its Some Kinetic Properties. Afr. J. Biotechnol. 2014, 13, 2373–2378.
  • Chauhan, P. S.; Sharma, P.; Puri, N.; Gupta, N. Purification and Characterization of an Alkali-Thermostable β-Mannanase from Bacillus nealsonii PN-11 and Its Application in Mannooligosaccharides Preparation Having Prebiotic Potential. Eur. Food Res. Technol. 2014, 238, 927–936.
  • Zhou, C.; Xue, Y.; Ma, Y. Characterization and High-Efficiency Secreted Expression in Bacillus subtilis of a Thermo-Alkaline β-Mannanase from an Alkaliphilic Bacillus clausii Strain S10. Microb Cell Fact. 2018, 17, 124.
  • Lineweaver, H.; Burk, D. The determination of Enzyme Dissociation Constants. J. Am. Chem. Soc. 1934, 56, 658–666.
  • Sari, S. L. A.; Triyanto, T.; Zuprizal, Z.; Prijambada, I. D. Cellulolytic and Mannanolytic Aerobic Bacteria Isolated from Buffalo Rumen (Bubalus Babalis) and Its Potency to Degrade Fiber in Palm Kernel Meal. Biodiversitas 2021, 22, 2829–2837.
  • Sambo, S.; Salau, A. I. Studies on Cellulose Degrading Microorganisms Associated with Rumen of Ruminant Animals. World J. Microbiol. 2015, 2, 26–32.
  • Guder, D. G.; Krishna, M. S. R. Isolation and Characterization of Potential Cellulose Degrading Bacteria from Sheep Rumen. J. Pure Appl. Microbiol. 2019, 13, 1831–1839.
  • Sanni, D. M.; Lawal, O. T.; Enujiugha, V. Purification and Characterization of Phytase from Aspergillus fumigatus Isolated from African Giant Snail (Achatina Fulica). Biocatal. Agric. Biotechnol. 2019, 17, 225–232.
  • Olopoda, I. A.; Lawal, O. T.; Omotoyinbo, O. V.; Kolawole, A. N.; Sanni, D. M. Biochemical characterization of a Thermally Stable, Acidophilic and Surfactant-Tolerant Xylanase from Aspergillus Awamori AFE1 and Hydrolytic Efficiency of Its Immobilized Form. Process Biochem. 2022, 121, 45–55., -.
  • Jeong, C. S. Isolation and Characterization of Mannanase Producing Bacillus amyloliquefaciens CS47 from Horse Feces. J. Life Sci. 2009, 19, 1724–1730.
  • Ei-Sharouny, E. E.; Ei-Toukhy, N. M.; Ei-Sersy, N. A.; Ei-Gayar, A. A. Optimization and Purification of Mannanase Produced by an Alkaliphilic-Thermotolerant Bacillus cereus N1 Isolated from Bani Salama Lake in Wadi El-Natron. Biotechnol. Biotechnol. Equip. 2015, 29, 315–323.
  • Kim, S.; Lee, M.-H.; Lee, E.-S.; Nam, Y.-D.; Seo, D.-H. Characterization of Mannanase from Bacillus sp., a Novel Codium Fragile Cell Wall-Degrading Bacterium. Food Sci. Biotechnol. 2018, 27, 115–122.
  • Adıgüzel, A. O.; Tunçer, M. Production, Purification, Characterization and Usage of a Detergent Additive of Endoglucanase from Isolated Halotolerant Amycolatopsis Cihanbeyliensis Mutated Strain Mut43. Biocatal. Biotransformation 2017, 35, 197–204.
  • Huang, J.-W.; Chen, C.-C.; Huang, C.-H.; Huang, T.-Y.; Wu, T.-H.; Cheng, Y.-S.; Ko, T.-P.; Lin, C.-Y.; Liu, J.-R.; Guo, R.-T. Improving the Specific Activity of β-Mannanase from Aspergillus Niger BK01 by Structure-Based Rational Design. Biochim Biophys Acta 2014, 1844, 663–669. DOI: 10.1016/j.bbapap.2014.01.011.
  • Li, J.; Wei, X.; Tang, C.; Wang, J.; Zhao, M.; Pang, Q.; Wu, M. Directed modification of the Aspergillus Usamii β-Mannanase to Improve Its Substrate Affinity by in Silico Design and Site-Directed Mutagenesis. J Ind Microbiol Biotechnol 2014, 41, 693–700.
  • Couturier, M.; Feliu, J.; Bozonnet, S.; Roussel, A.; Berrin, J.-G. Molecular engineering of Fungal GH5 and GH26 Beta-(1, 4)-Mannanases toward Improvement of Enzyme Activity. PLoS One 2013, 8, e79800. DOI: 10.1371/journal.pone.0079800.
  • Ma, Y.; Xue, Y.; Dou, Y.; Xu, Z.; Tao, W.; Zhou, P. Characterization and Gene Cloning of a Novel Beta-Mannanase from Alkaliphilic Bacillus sp. N16-5. Extremophiles 2004, 8, 447–454. DOI: 10.1007/s00792-004-0405-4.
  • Yang, P.; Li, Y.; Wang, Y.; Meng, K.; Luo, H.; Yuan, T.; Bai, Y.; Zhan, Z.; Yao, B. A novel Beta-Mannanase with High Specific Activity from Bacillus circulans CGMCC1554: gene Cloning, Expression and Enzymatic Characterization. Appl. Biochem. Biotechnol. 2009, 159, 85–94.
  • Seesom, W.; Thongket, P.; Yamamoto, T.; Takenaka, S.; Sakamoto, T.; Sukhumsirichart, W. Purifcation, Characterization, and Overexpression of an Endo-1,4-β-Mannanase from Thermotolerant Bacillus sp. SWU60. World J. Microbiol. Biotechnol. 2017, 33, 53.
  • Hatada, Y.; Takeda, N.; Hirasawa, K.; Ohta, Y.; Usami, R.; Yoshida, Y.; Grant, W. D.; Ito, S.; Horikoshi, K. Sequence of the Gene for a High-Alkaline Mannanase from an Alkaliphilic Bacillus sp. strain JAMB-750, Its Expression in Bacillus subtilis and Characterization of the Recombinant Enzyme. Extremophiles 2005, 29, 497–500.
  • Cheng, L.; Duan, S.; Feng, X.; Zheng, K.; Yang, Q.; Liu, Z. Purification and Characterization of a Thermostable β-Mannanase from Bacillus subtilis BE-91: potential Application in Inflammatory Diseases. BioMed Res. Int. 2016, 7, 6380147.
  • Adeseko, C. A.; Sanni, D. M.; Lawal, O. T. Biochemical studies of Enzyme-Induced Browning of African Bush Mango (Irvingia Gabonensis) Fruit Pulp. Prep. Biochem. Biotechnol. 2021a, 52(7): 835–844. DOI: 10.1080/10826068.2021.1998113.
  • Adeseko, C. A.; Sanni, D. M.; Salawu, O. S.; Kade, I. J.; Bamidele, O. S.; Lawal, O. T. Purification and Biochemical Characterization of Polyphenol Oxidase of African Bush Mango (Irvingia Gabonensis) Fruit Peel. Biocatal. Agric. Biotechnol. 2021b, 36, 101119. DOI: 10.1080/10826068.2021.1998113.
  • Vijayalaxmi, S.; Prakash, P.; Jayalakshmi, S. K.; Mulimani, V. H.; Sreeramulu, K. Production of Extremely Alkaliphilic, Halotolerent, Detergent, and Thermostable Mannanase by the Free and Immobilized Cells of Bacillus halodurans PPKS-2. Purifcation and Characterization. Appl. Biochem. Biotechnol. 2013, 171, 382–395.
  • Talbot, G.; Sygusch, J. Purification and Characterization of Thermostable Beta-Mannanase and Alpha-Galactosidase from Bacillus stearothermophilus. Appl Environ Microbiol 1990, 56, 3505–3510. DOI: 10.1128/aem.56.11.3505-3510.1990.
  • Gherardini, F. G.; Salyers, A. A. Characterization of an Outer Membrane Mannanase from Bacteroides ovatus. J Bacteriol. 1987, 169, 2031–2037. DOI: 10.1128/jb.169.5.2031-2037.1987.
  • Chandra, M. R. S.; Lee, Y. S.; Park, I. H.; Zhou, Y.; Kim, K. K.; Choi, Y. L. Isolation, Purification and Characterization of a Thermostable β-Mannanase from Paenibacillus sp. DZ3. J. Appl. Biol. Chem. 2011, 54, 325–331.
  • Kurakake, M.; Sumida, T.; Masuda, D.; Oonishi, S.; Komaki, T. Production of Galacto-Mannooligosaccharides from Guar Gum by β-Mannanase from Penicillium Oxalicum. J Agric Food Chem. 2006, 54, 7885–7889. DOI: 10.1021/jf061502k.
  • Civas, A.; Eberhard, R.; Le Dizet, P.; Petek, L. Glycosidases induced in Aspergillus Tamarii. Secreted alpha-D-Galactosidase and beta-D-Mannanase. J. Biochem. 1984, 219, 857–863.
  • Regalado, C.; Garcia-Almendarez, B. E.; Venegas-Barrera, L. M.; Tellez-Jurado, A.; Rodriguez-Serrano, G.; Huerta-Ochoa, S.; Whitaker, J. R. Production, Partial Purification and Properties of Beta-Mannanases Obtained by Solid Substrate Fermentation of Spent Soluble Coffee Wastes and Copra Paste Using Aspergillus oryzae and Aspergillus Niger. J. Sci. Food Agric. 2000, 80, 1343–1350.
  • Puchart, V.; Vrsanská, M.; Svoboda, P.; Pohl, J.; Ogel, Z. B.; Biely, P. Purification and Characterization of Two Forms of Endo-β-1,4-Mannanase from a Thermotolerant Fungus, Aspergillus fumigatus IMI 385708 (Formerly Thermomyces Lanuginosus IMI 158749). Biochim. Biophys. Acta 2004, 1674, 239–250. DOI: 10.1016/j.bbagen.2004.06.022.
  • Arisan-Atac, I.; Hodits, R.; Kristufek, D.; Kubicek, C. P. Purification, and Characterization of a β-Mannanase of Trichoderma reesei C-30. Appl. Microbiol. Biotechnol. 1993, 39, 58–62.
  • Ferreira, H. M.; Filho, E. X. F. Purification and Characterization of a β-Mannanase from Trichoderma Harzianum Strain T4. Laborat’Orio de Enzimologio, Depart. Biol. Cel. Universidade de BráEslia, Brazil 2004, 70, 900–910.
  • Olaniyi, A. O.; Afolayan, O. D.; Lawal, O. T.; Igbe, F. O. Properties of a Neutral, Thermally Stable and Surfactant Tolerant Pullulanase from Worker Termite Gut-Dwelling Bacillus safensis as Potential for Industrial Applications. Heliyon 2022b, 8(9): e10617.
  • Şahin, E.; Dertli, E. Biocatalyzed Enantiomerically Pure Production of (S)-Phenyl(Thiophen-2-yl)Methanol. J. Heterocycl. Chem. 2019, 56, 2884–2888. DOI: 10.1002/jhet.3681.
  • Kalay, E.; Sahin, E. Biocatalytic asymmetric Synthesis of (R)-1-Tetralol Using Lactobacillus paracasei BD101. Chirality 2021b, 33, 447–453.
  • Cano-Ramirez, C.; Santiago-Hernandez, A.; Rivera-Orduna, F. N.; Garcia-Huante, Y.; Zúñiga, G.; Hidalgo-Lara, M. E. ‑ Expression, Purification and Characterization of an Endoglucanase from Serratia proteamaculans CDBB‑1961, Isolated from the Gut of Dendroctonus Adjunctus (Coleoptera: Scolytinae). AMB Expr. 2016, 6, 1–13.
  • Luo, Z.; Miao, J.; Li, G.; Du, Y.; Yu, X. A recombinant Highly Thermostable β-Mannanase (ReTMan26) from Thermophilic Bacillus subtilis (TBS2) Expressed in Pichia pastoris and Its pH and Temperature Stability. Appl. Biochem. Biotechnol. 2017, 182, 1259–1275.
  • Dhawan, S.; Kaur, J. Microbial mannanases: An Overview of Production and Applications. Crit. Rev. Biotechnol. 2007, 27, 197–216.
  • Takeda, N.; Hirasawa, K.; Uchimura, K.; Nogi, Y.; Hatada, Y.; Akita, M.; Usami, R.; Yoshida, Y.; Grant, W. D.; Ito, S.; Horikoshi, K. Alkaline mannanase from a Novel Species of Alkaliphilic Bacillus. J. Appl. Glycosci. 2004, 51, 229–236.
  • Songsiriritthigul, C.; Buranabanyat, B.; Haltrich, D.; Yamabhai, M. Efficient recombinant Expression and Secretion of a Thermostable GH26 Mannan Endo-1,4-Beta-Mannosidase from Bacillus licheniformis in Escherichia coli. Microb. Cell Fact. 2010, 9, 20. DOI: 10.1186/1475-2859-9-20.
  • Vu, T. T.; Quyen, D. T.; Dao, T. T.; Nguyen, S. T. Cloning, High-Level Expression, Purification, and Properties of a Novel Endo-Beta-1,4-Mannanase from Bacillus subtilis G1 in Pichia pastoris. J. Microbiol. Biotechnol. 2012, 22, 331–338.
  • Yu, S.; Li, Z.; Wang, Y.; Chen, W.; Fu, L.; Tang, W.; Chen, C.; Liu, Y.; Zhang, X.; Ma, L. High-Level Expression and Characterization of a Thermophilic β-Mannanase from Aspergillus Niger in Pichia pastoris. Biotechnol. Lett. 2015, 37, 1853–1859.
  • Yang, H.; Shi, P.; Lu, H.; Wang, H.; Luo, H.; Huang, H.; Yang, P.; Yao, B. A thermophilic β-Mannanase from Neosartorya Fscheri P1 with Broad pH Stability and Significant Hydrolysis Ability of Various Mannan Polymers. Food Chem. 2015, 173, 283–289.
  • Razzaq, A.; Shamsi, S.; Ali, A.; Ali, Q.; Sajjad, M.; Malik, A.; Ashraf, M. Microbial proteases Applications. Front. Bioeng. Biotechnol. 2019, 7, 110. DOI: 10.3389/fbioe.2019.00110.
  • Do, B. C.; Dang, T. T.; Berrin, J. G.; Haltrich, D.; To, K. A.; Sigoillot, J. C.; Yamabhai, M. Cloning, Expression in Pichia pastoris, and Characterization of a Thermostable GH5 Mannan Endo-1,4-Beta-Mannosidase from Aspergillus Niger BK01. Microb. Cell. Fact. 2009, 8, 59. DOI: 10.1186/1475-2859-8-59.
  • Kim, D. Y.; Lee, M. J.; Cho, H.-Y.; Lee, J. S.; Lee, M.-H.; Chung, C. W.; Shin, D.-H.; Rhee, Y. H.; Son, K.-H.; Park, H.-Y. Genetic and Functional Characterization of an Extracellular Modular GH6 Endo-b-1,4- Glucanase from an Earthworm Symbiont, Cellulosimicrobium funkei HY-13. Antonie van Leeuwenhoek 2016, 109, 1–12.
  • Mabrouk, M. E. M.; El Ahwany, A. M. D. Production of β-Mannanase by Bacillus Amylolequifaciens 10A1 Cultured on Potato Peels. Afr. J. Biotechnol. 2008, 7, 1123–1128.
  • Chauhan, P. S.; Puri, N.; Sharma, P.; Gupta, N. Mannanases: microbial Sources, Production, Properties and Potential Biotechnological Applications. Appl. Microbiol. Biotechnol. 2012, 93, 1817–1830. DOI: 10.1007/s00253-012-3887-5.
  • Zahura, U. A.; Rahman, M. M.; Inoue, A.; Tanaka, H.; Ojima, T. An endo-b-1,4-mannanase, AkMan, from the Common Sea Hare Aplysia kurodai. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 2010, 157, 137–143. DOI: 10.1016/j.cbpb.2010.05.012
  • Jiang, Z. J.; Wei, Y.; Li, D. Y.; Li, L.; Chai, P. P.; Kusakabe, I. High-Level Production, Purification and Characterization of a Thermostable β-Mannanase from the Newly Isolated Bacillus subtilis WY34. Carbohydr. Polym. 2006, 66, 88–96.
  • Kim, D. Y.; Ham, S.-J.; Lee, H. J.; Cho, H.-Y.; Kim, J.-H.; Kim, Y.-J.; Shin, D.-H.; Rhee, Y. H.; Son, K.-H.; Park, H.-Y. Cloning and Characterization of a Modular GH5 β-1,4-Mannanase with High Specific Activity from the Fibrolytic Bacterium Cellulosimicrobium sp. strain HY-13. Bioresour. Technol. 2011, 102, 9185–9192. DOI: 10.1016/j.biortech.2011.06.073.
  • Tamaru, Y.; Araki, T.; Amagoi, H.; Mori, H.; Morishita, T. Purification and Characterization of an Extracellular Beta-1,4-Mannanase from a Marine Bacterium, Vibrio sp. strain MA-138. Appl. Environ. Microbiol. 1995, 61, 4454–4458. DOI: 10.1128/aem.61.12.4454-4458.1995.
  • Nazir, A.; Soni, R.; Saini, H. S.; Manhas, R. K.; Chadha, B. S. Purification and Characterization of an Endoglucanase from Aspergillus terreus Highly Active against Barley β-Glucan and Xyloglucan. World J. Microbiol. Biotechnol. 2009, 25, 1189–1197.
  • Tamaru, Y.; Araki, T.; Amagoi, H.; Mori, H.; Morishita, T. Purification and Characterization of an Extracellular Beta-1,4-Mannanase from a Marine Bacterium, Vibrio sp. Strain MA-138. Appl. Environ. Microbiol. 1995, 61, 4454–4458. DOI: 10.1128/aem.61.12.4454-4458.
  • Lv, J.; Chen, Y.; Pei, H.; Yang, W.; Li, Z.; Dong, B.; Cao, Y. Cloning, Expression, and Characterization of β-Mannanase from Bacillus subtilis MAFIC-S11 in Pichia pastoris. Appl. Biochem. Biotechnol. 2013, 169, 2326–2340.
  • Shi, P.; Yuan, T.; Zhao, J.; Huang, H.; Luo, H.; Meng, K.; Wang, Y.; Yao, B. Genetic and Biochemical Characterization of a Protease Resistant Mesophilic β-Mannanase from Streptomyces sp. S27. J. Ind. Microbiol. Biotechnol. 2011, 38, 451–458. DOI: 10.1007/s10295-010-0789-3.
  • Zhao, J.; Shi, P.; Luo, H.; Yang, P.; Zhao, H.; Bai, Y.; Huang, H.; Wang, H.; Yao, B. An acidophilic and Acid-Stable Beta-Mannanase from Phialophora sp. p13 with High Mannan Hydrolysis Activity under Simulated Gastric Conditions. J. Agric. Food. Chem. 2010, 58, 3184–3190.
  • Zhang, R.; Song, Z.; Wu, Q.; Zhou, J.; Li, J.; Mu, Y.; Tang, X.; Xu, B.; Ding, J.; Deng, S.; Huang, Z. A novel Surfactant-, NaCl-, and Protease-Tolerant β-Mannanase from Bacillus sp. Folia Microbiol. 2016, 61, 233–242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.