310
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Optimization of enzymatic saccharification of industrial wastes using a thermostable and halotolerant endoglucanase through Box-Behnken experimental design

, , , , , & show all

References

  • Massarente, V. S.; Zanoni, J. A.; Gomes, E.; Bonilla-Rodriguez, G. O. Biochemical Characterization of Endoglucanases Produced by Myceliophthora thermophila M.7.7 in Solid-State Culture. Biocatal. Agric. Biotechnol. 2020, 27, 101684. DOI: 10.1016/j.bcab.2020.101684.
  • Castillo, A. M.; Alavez, V.; Castro-Porras, L.; Martínez, Y.; Cerritos, R. Analysis of the Current Agricultural Production System, Environmental, and Health Indicators: Necessary the Rediscovering of the Pre-Hispanic Mesoamerican Diet? Front. Sustain. Food Syst. 2020, 4, 1–12. DOI: 10.3389/fsufs.2020.00005.
  • Khaire, K. C.; Moholkar, V. S.; Goyal, A. Alkaline Pretreatment and Response Surface Methodology Based Recombinant Enzymatic Saccharification and Fermentation of Sugarcane Tops. Bioresour. Technol. 2021, 341, 125837. DOI: 10.1016/j.biortech.2021.125837.
  • Toogood, H. S.; Scrutton, N. S. Retooling Microorganisms for the Fermentative Production of Alcohols. Curr. Opin. Biotechnol. 2018, 50, 1–10. DOI: 10.1016/j.copbio.2017.08.010.
  • Thakur, A.; Sharma, K.; Khaire, K. C.; Moholkar, V. S.; Goyal, A. Enzymes: Key Role in the Conversion of Waste to Bioethanol. Enzyme Microb. 2020, 257–268. DOI: 10.1201/9780429061257.
  • Sadh, P. K.; Duhan, S.; Duhan, J. S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5. DOI: 10.1186/s40643-017-0187-z.
  • Melanouri, E.; Dedousi, M.; Diamantopoulou, P. Cultivating Pleurotus ostreatus and Pleurotus eryngii Mushroom Strains on Agro-Industrial Residues in Solid-State Fermentation. Part I: Screening for Growth, Endoglucanase, Laccase and Biomass Production in the Colonization Phase. Carbon Resour. Convers. 2022, 5, 61–70. DOI: 10.1016/j.crcon.2021.12.004.
  • Squinca, P.; Badino, A. C.; Farinas, C. S. A Closed-Loop Strategy for Endoglucanase Production Using Sugarcane Bagasse Liquefied by a Home-Made Enzymatic Cocktail. Bioresour. Technol. 2018, 249, 976–982. DOI: 10.1016/j.biortech.2017.10.107.
  • Xue, D.; Zeng, X.; Lin, D.; Yao, S. Ethanol Tolerant Endoglucanase from Aspergillus niger Isolated from Wine Fermentation Cellar. Biocatal. Agric. Biotechnol. 2018, 15, 19–24. DOI: 10.1016/j.bcab.2018.04.016.
  • Gupta, V. K.; Kubicek, C. P.; Berrin, J. G.; Wilson, D. W.; Couturier, M.; Berlin, A.; Filho, E. X. F.; Ezeji, T. Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass. Trends Biochem. Sci. 2016, 41, 633–645. DOI: 10.1016/j.tibs.2016.04.006.
  • Silva, T. P.; Ferreira, A. N.; Albuquerque, F. S.; Barros, A. C. A.; Luz, J. M. R.; Gomes, F. S.; Pereira, H. J. V. Box-Behnken Experimental Design for the Optimization of Enzymatic Saccharification of Wheat Bran. Biomass Convers. Bioref. 2021, 1–8. DOI: 10.1007/s13399-021-01378-0.
  • Silva, T. P.; de Albuquerque, F. S.; Ferreira, A. N.; Santos, D.; Santos, T. V. D.; Meneghetti, S. M. P.; Franco, M.; Luz, J. M. R.; Pereira, H. J. V. Dilute Acid Pretreatment for Enhancing the Enzymatic Saccharification of Agroresidues Using a Botrytis ricini Endoglucanase. Biotechnol. Appl. Biochem. 2023, 70, 184–192. DOI: 10.1002/bab.2341.
  • Caron, T.; Le Piver, M.; Péron, A.; Lieben, P.; Lavigne, R.; Brunel, S.; Roueyre, D.; Place, M.; Bonnarme, P.; Giraud, T.; et al. Strong Effect of Penicillium roqueforti Populations on Volatile and Metabolic Compounds Responsible for Aromas, Flavor and Texture in Blue Cheeses. Int. J. Food Microbiol. 2021, 354, 109174. DOI: 10.1016/j.ijfoodmicro.2021.109174.
  • Kure, C. F.; Skaar, I. The Fungal Problem in Cheese Industry. Curr. Opin. Food Sci. 2019, 29, 14–19. DOI: 10.1016/j.cofs.2019.07.003.
  • Doğan, M.; Tekiner, İH. Evaluating Starter Culture Potential of Wild Penicillium roqueforti Strains from Moldy Cheeses of Artisanal Origin. Food Biosci. 2021, 43, 101253. DOI: 10.1016/j.fbio.2021.101253.
  • El-Shishtawy, R. M.; Mohamed, S. A.; Asiri, A. M.; Gomaa, A. M.; Ibrahim, I. H.; Al-Talhi, H. A. Saccharification and Hydrolytic Enzyme Production of Alkali Pre-Treated Wheat Bran by Trichoderma virens under Solid State Fermentation. BMC Biotechnol. 2015, 15, 37. DOI: 10.1186/s12896-015-0158-4.
  • Sondhi, S.; Saini, K. Response Surface Based Optimization of Laccase Production from Bacillus sp. MSK-01 Using Fruit Juice Waste as an Effective Substrate. Heliyon 2019, 5, e01718. DOI: 10.1016/j.heliyon.2019.e01718.
  • De Carvalho, M. S.; De Menezes, L. H. S.; Pimentel, A. B.; Costa, F. S.; Oliveira, P. C.; Dos Santos, M. M. O.; Tavares, I. M. C.; Irfan, M.; Bilal, M.; Dias, J. C. T.; et al. Application of Chemometric Methods for the Optimization Secretion of Xylanase by Aspergillus oryzae in Solid State Fermentation and Its Application in the Saccharifcation of Agro-Industrial Waste. Waste Biomass Valor. 2022, 1, 11. DOI: 10.1007/s12649-022-01832-8.
  • Valdés, G.; Mendonça, R. T.; Aggelis, G. Lignocellulosic Biomass as a Substrate for Oleaginous Microorganisms: A Review. Appl. Sci. 2020, 10, 7698. DOI: 10.3390/app10217698.
  • Xue, D. S.; Liang, L. Y.; Lin, D. Q.; Yao, S. J. Thermal Inactivation Kinetics and Secondary Structure Change of a Low Molecular Weight Halostable Exoglucanase from a Marine Aspergillus niger at High Salinities. Appl. Biochem. Biotechnol. 2017, 183, 1111–1125. DOI: 10.1007/s12010-017-2487-3.
  • Ramos, M. D. N.; Milessi, T. S.; Candido, R. G.; Mendes, A. A.; Aguiar, A. Enzymatic Catalysis as a Tool in Biofuels Production in Brazil: Current Status and Perspectives. Energy Sustain. Dev. 2022, 68, 103–119. DOI: 10.1016/j.esd.2022.03.007.
  • Madhuri, N.; Jyoti, D.; Disha, S.; Velmurugan, B.; Bipin, V.; Manisha, H.; Kumud, M. Cellulase Production, Simultaneous Saccharification and Fermentation in Asingle Vessel: A New Approach for Production of Bio-Ethanol from Mild Alkali Pre-Treated Water Hyacinth. J. Environ. Chem. Eng. 2017, 5, 2176–2181. DOI: 10.1016/j.jece.2017.04.043.
  • Juturu, V.; Wu, J. C. Microbial Xylanases: Engineering, Production and Industrial Applications. Biotechnol. Adv. 2012, 30, 1219–1227. DOI: 10.1016/j.biotechadv.2011.11.006.
  • Liu, X.; Kokare, C. Chapter 11 – Microbial Enzymes of Use in Industry. Enzyme Microb. Technol. 2017, 267–298. DOI: 10.1016/B978-0-12-803725-6.00011-X.
  • Pathak, P.; Bhardwaj, N. K.; Singh, A. K. Production of Crude Cellulase and Xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and Its Application in Photocopier Waste Paper Recycling. Appl. Biochem. Biotechnol. 2014, 172, 3776–3797. DOI: 10.1007/s12010-014-0758-9.
  • Anish, R.; Rahman, M. S.; Rao, M. Application of Cellulases from Na Lkalothermophilic Thermomonospora sp. in Biopolishing of Denims. Biotechnol. Bioeng. 2007, 96, 48–56. DOI: 10.1002/bit.21175.
  • Mérillon, J. M.; Ramawat, K. G. Different Shades of Fungal Metabolites: An Overview. Fungal Metab. 2017. DOI: 10.1007/978-3-319-25001-4_34.
  • de Brito, A. R.; Santos Reis, N. D.; Silva, T. P.; Ferreira Bonomo, R. C.; Trovatti Uetanabaro, A. P.; de Assis, S. A.; da Silva, E. G. P.; Aguiar-Oliveira, E.; Oliveira, J. R.; Franco, M. Comparison between the Univariate and Multivariate Analysis on the Partial Characterization of the Endoglucanase Produced in the Solid-State Fermentation by Aspergillus oryzae ATCC 10124. Prep. Biochem. Biotechnol. 2017, 47, 977–985. DOI: 10.1080/10826068.2017.1365247.
  • Ferraz, J. L. A.; Souza, L. O.; Fernandes, A. G. A.; Ferreira, M. L. O.; Oliveira, J. R.; Franco, M. Optimization of the Solid-State Fermentation Conditions and Characterization of Xylanase Produced by Penicillium roqueforti ATCC 10110 Using Yellow Mombin Residue (Spondias mombin L.). Chem. Eng. Commun. 2019, 206, 1–12. DOI: 10.1080/00986445.2019.1572000.
  • Filipe, D.; Fernandes, H.; Castro, C.; Peres, H.; Oliva‐Teles, A.; Belo, I.; Salgado, J. M. Improved Lignocellulolytic Enzyme Production and Antioxidant Extraction Using Solid‐State Fermentation of Olive Pomace Mixed with Winery Waste. Biofuels Bioprod. Bioref. 2020, 14, 78–91. DOI: 10.1002/bbb.2073.
  • Oliveira, P. C.; De Brito, A. R.; Pimentel, A. B.; Soares, G. A.; Pacheco, C. S. V.; Santana, N. B.; Da Silva, E. G. P.; Fernandes, A. G. A.; Ferreira, M. L. O.; Oliveira, J. R.; Franco, M. Cocoa Shell for the Production of Endoglucanase by Penicillium roqueforti ATCC 10110 in Solid State Fermentation and Biochemical Properties. Rev. Mex. Ing. Quim. 2019, 18, 777–787. DOI: 10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Oliveira.
  • Ferreira, S. L. C.; Bruns, R. E.; Ferreira, H. S.; Matos, G. D.; David, J. M.; Brandão, G. C.; Da Silva, E. G. P.; Portugal, L. A.; Dos Reis, P. S.; Souza, A. S.; Dos Santos, W. N. L. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta 2007, 597, 179–186. DOI: 10.1016/j.aca.2007.07.011.
  • Anuchi, S. O.; Campbell, K. L. S.; Hallett, J. P. Efective Pretreatment of Lignin-Rich Coconut Wastes Using a Low-Cost Ionic Liquid. Sci. Rep. 2022, 12, 6108. DOI: 10.1038/s41598-022-09629-4.
  • Pereira, P. H. F.; Ornaghi, H. L.; Arantes, V.; Cioffi, M. O. H. Effect of Chemical Treatment of Pineapple Crown Fiber in the Production, Chemical Composition, Crystalline Structure, Thermal Stability and Thermal Degradation Kinetic Properties of Cellulosic Materials. Carbohydr. Res. 2021, 499, 108227. DOI: 10.1016/j.carres.2020.108227.
  • Bagewadi, Z. K.; Mulla, S. I.; Ninnekar, H. Z. Optimization of Laccase Production and Its Application in Delignification of Biomass. Int. J. Recycl. Org. Waste Agric. 2017, 6, 351–365. DOI: 10.1007/s40093-017-0184-4.
  • Sun, X.; Liu, Z.; Qu, Y.; Li, X. The Effects of Wheat Bran Composition on the Production of Biomass-Hydrolyzing Enzymes by Penicillium decumbens. Appl. Biochem. Biotechnol. 2008, 146, 119–128. DOI: 10.1007/978-1-60327-526-2_25.
  • Mohapatra, S.; Padhy, S.; Mohapatra, P. K. D.; Thatoi, H. N. Enhanced Reducing Sugar Production by Saccharification of Lignocellulosic Biomass, Pennisetum Species through Cellulose from a Newly Isolated Aspergillus fumigatus. Bioresour. Technol. 2018, 253, 262–272. DOI: 10.1016/j.biortech.2018.01.023.
  • Marraiki, N.; Vijayaraghavan, P.; Elgorban, A. M.; Deepa Dhas, D. S.; Al-Rashed, S.; Yassin, M. T. Low Cost Feedstock for the Production of Endoglucanase in Solid State Fermentation by Trichoderma hamatum NGL1 Using Response Surface Methodology and Saccharification Efficacy. J. King Saud Univ. Sci. 2020, 32, 1718–1724. DOI: 10.1016/j.jksus.2020.01.008.
  • Silva, T. P.; Albuquerque, F. S.; Santos, C. W. V.; Franco, M.; Caetano, L. C.; Pereira, H. J. V. Production, Purification, Characterization and Application of a New Halotolerant and Thermostable Endoglucanase of Botrytis ricini URM 5627. Bioresour. Technol. 2018, 270, 263–269. DOI: 10.1016/j.biortech.2018.09.022.
  • Patel, A. K.; Singhania, R. R.; Sim, S. J.; Pandey, A. Thermostable Cellulases: Current Status and Perspectives. Bioresour. Technol. 2019, 279, 385–392. DOI: 10.1016/j.biortech.2019.01.049.
  • Ire, F. S.; Okoli, A. O.; Ezebuiro, V. Production and Optimization of Cellulase from Penicillium sp. using Corn-Cob and Pawpaw Fibre as Substrates. JAMB 2018, 8, 1–10. DOI: 10.9734/JAMB/2018/39227.
  • Irfan, M.; Tayyab, A.; Hasan, F.; Khan, S.; Badshah, M.; Shah, A. A. Production and Characterization of Organic Solvent-Tolerant Cellulase from Bacillus amyloliquefaciens AK9 Isolated from Hot Spring. Appl. Biochem. Biotechnol. 2017, 182, 1390–1402. DOI: 10.1007/s12010-017-2405-8.
  • Pereira, H. J. V.; Salgado, M. C. O.; Oliveira, E. B. Immobilized Analogues of Sunflower Trypsin Inhibitor-1 Constitute a Versatile Group of Affinity Sorbents for Selective Isolation of Serine Proteases. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 2039–2044. DOI: 10.1016/j.jchromb.2009.05.036.
  • Xu, J.; He, B.; Wu, B.; Wang, B.; Wang, C.; Hu, L. An Ionic Liquid Tolerant Cellulose Derived from Chemically Polluted Microhabitats and Its Application in In Situ Sac-Charification of Rice Straw. Bioresour. Technol. 2014, 157, 166–173. DOI: 10.1016/j.biortech.2014.01.102.
  • Dutra, J.; Passos, M. F.; García, G. J. Y.; Gomes, R. F.; Magalhães, T. A.; Freitas, A. S.; Laguna, J. G.; da Costa, F. M. R.; da Silva, T. F.; Rodrigues, L. S.; et al. Anaerobic Digestion Using Cocoa Residues as Substrate: Systematic Review and Meta-Analysis. Energy Sustain. Dev. 2023, 72, 265–277. DOI: 10.1016/j.esd.2022.12.007.
  • Lessa, O. A.; Silva, F. N.; Tavares, I.; Sampaio, I. C. F.; Pimentel, A. B.; Leite, S. G. F.; Gutarra, M. L. E.; Tienne, L. G. P.; Irfan, M.; Bilal, M.; et al. Structural Alteration of Cocoa Bean Shell Fibers through Biological Treatment Using Penicillium roqueforti. Prep. Biochem. Biotechnol. 2023, 1–10. DOI: 10.1080/10826068.2023.2177866.
  • Ferraz, J.; Souza, L. O.; Soares, G. A.; Coutinho, J. P.; de Oliveira, J. R.; Aguiar-Oliveira, E.; Franco, M. Enzymatic Saccharification of Lignocellulosic Residues Using Cellulolytic Enzyme Extract Produced by Penicillium roqueforti ATCC 10110 Cultivated on Residue of Yellow Mombin Fruit. Bioresour. Technol. 2018, 248, 214–220. DOI: 10.1016/j.biortech.2017.06.048.
  • Adıgüzel, A. O.; Tunçer, M. Production and Characterization of Partially Purified Thermostable Endoxylanase and Endoglucanase from Novel Actinomadura geliboluensis and the Biotechnological Applications in the Saccharification of Lignocellulosic Biomass. Bioresour. Technol. 2017, 12, 2528–2547. DOI: 10.15376/biores.12.2.2528-2547.
  • Marques, G. L.; Reis, N. R.; Silva, T. P.; Ferreira, M. L. O.; Aguiar-Oliveira, E.; Oliveira, J. R.; Franco, M. Production and Characterisation of Xylanase and Endoglucanases Produced by Penicillium roqueforti ATCC 10110 Through the Solid-State Fermentation of Rice Husk Residue. Waste Biomass Valor. 2018, 9, 2061–2069. DOI: 10.1007/s12649-017-9994-x.
  • Masran, R.; Zanirun, Z.; Bahrin, E. K.; Ibrahim, M. F.; Yee, P. L.; Abd-Aziz, S. Harnessing the Potential of Ligninolytic Enzymes for Lignocellulosic Biomass Pretreatment. Appl. Microbiol. Biotechnol. 2016, 100, 5231–5246. DOI: 10.1007/s00253-016-7545-1.
  • Pereira, L. M. S.; Milan, T. M.; Tapia-Blácido, D. R. Using Response Surface Methodology (RSM) to Optimize 2G Bioethanol Production: A Review. Biomass Bioenergy 2021, 151, 106166. DOI: 10.1016/j.biombioe.2021.106166.
  • Gawas, S. D.; Lokanath, N.; Rathod, V. K. Optimization of Enzymatic Synthesis of Ethyl Hexanoate in a Solvent Free System Using Response Surface Methodology (RSM). Biocatal. Biotransform. 2018, 4, 14–26. DOI: 10.1515/boca-2018-0002.
  • Lu, S.; Wang, Q.; Liang, Z.; Wang, W.; Liang, C.; Wang, Z.; Yuan, Z.; Lan, P.; Qi, W. Saccharification of Sugarcane Bagasse by Magnetic Carbon-Based Solid Acid Pretreatment and Enzymatic Hydrolysis. Ind. Crops Prod. 2021, 160, 113159. DOI: 10.1016/j.indcrop.2020.113159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.