191
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The antibiofilm potential of a heteropolysaccharide produced and characterized from the isolated marine bacterium Glutamicibacter nicotianae BPM30

, &

References

  • Funari, R.; Shen, A. Q. Detection and Characterization of Bacterial Biofilms and Biofilm-Based Sensors. ACS Sens. 2022, 7, 347–357.
  • García, A.; Fernández‐Sandoval, M. T.; Morales‐Guzmán, D.; Martínez‐Morales, F.; Trejo‐Hernández, M. R. Advances in Exopolysaccharide Production from Marine Bacteria. J. Chem. Tech Biotech. 2022, 97, 2694–2705.
  • Kavita, K.; Mishra, A.; Jha, B. Isolation and Physico-Chemical Characterisation of Extracellular Polymeric Substances Produced by the Marine Bacterium Vibrio parahaemolyticus. Biofouling. 2011, 27, 309–317.
  • Andrew, M.; Jayaraman, G. Structural Features of Microbial Exopolysaccharides in Relation to Their Antioxidant Activity. Carbohydr. Res. 2020, 487, 107881.
  • Stincone, P.; Brandelli, A. Marine Bacteria as Source of Antimicrobial Compounds. Crit. Rev. Biotechnol. 2020, 40, 306–319.
  • Dave, S. R.; Upadhyay, K. H.; Vaishnav, A. M.; Tipre, D. R. Exopolysaccharides from Marine Bacteria: production, Recovery and Applications. Environ. Sustain. 2020, 3, 139–154.
  • Hou, C.; Yin, F.; Wang, S.; Zhao, A.; Li, Y.; Liu, Y. Helicobacter pylori Biofilm-Related Drug Resistance and New Developments in Its anti-Biofilm Agents. Infect. Drug Resist. 2022, 15, 1561–1571.
  • Wu, Y.; Yang, Y.; Zhang, Z.; Wang, Z.; Zhao, Y.; Sun, L. A Facile Method to Prepare Size-Tunable Silver Nanoparticles and Its Antibacterial Mechanism. Adv. Powder Technol. 2018, 29, 407–415.
  • Ni, Z.; Gu, X.; He, Y.; Wang, Z.; Zou, X.; Zhao, Y.; Sun, L. Synthesis of Silver Nanoparticle-Decorated Hydroxyapatite (HA@ Ag) Poriferous Nanocomposites and the Study of Their Antibacterial Activities. RSC Adv. 2018, 8, 41722–41730.
  • Yang, Y.; Zhang, Z.; Wan, M.; Wang, Z.; Zhao, Y.; Sun, L. Highly Sensitive Surface-Enhanced Raman Spectroscopy Substrates of Ag@ PAN Electrospinning Nanofibrous Membranes for Direct Detection of Bacteria. ACS Omega. 2020, 5, 19834–19843.
  • Patra, A.; Das, J.; Agrawal, N. R.; Kushwaha, G. S.; Ghosh, M.; Son, Y. O. Marine Antimicrobial Peptides-Based Strategies for Tackling Bacterial Biofilm and Biofouling Challenges. Molecules. 2022, 27, 7546.
  • Champion, M.; Portier, E.; Vallée-Réhel, K.; Linossier, I.; Balnois, E.; Vignaud, G.; Moppert, X.; Hellio, C.; Faÿ, F. Anti-Biofilm Activity of a Hyaluronan-like Exopolysaccharide from the Marine Vibrio MO245 against Pathogenic Bacteria. Mar. Drugs. 2022, 20, 728.
  • Abdulrahman, I.; Jamal, M. T.; Pugazhendi, A.; Dhavamani, J.; Satheesh, S. Antibiofilm Activity of Secondary Metabolites from Bacterial Endophytes of Red Sea Soft Corals. Int. Biodeterior. Biodegrad. 2022, 173, 105462.
  • Abdulrahman, I.; Jamal, M. T.; Pugazhendi, A.; Dhavamani, J.; Al-Shaeri, M.; Al-Maaqar, S.; Satheesh, S. Antibacterial and Antibiofilm Activity of Extracts from Sponge-Associated Bacterial Endophytes. Prep. Biochem. Biotechnol. 2023, 1–11.
  • Zanna, S.; Mercier, D.; Gardin, E.; Allion-Maurer, A.; Marcus, P. EPS for Bacterial anti-Adhesive Properties Investigated on a Model Metal Surface. Colloids Surf. B Biointerf. 2022, 213, 112413.
  • Rizzo, C.; Zammuto, V.; Lo Giudice, A.; Rizzo, M. G.; Spanò, A.; Laganà, P.; Martinez, M.; Guglielmino, S.; Gugliandolo, C. Antibiofilm Activity of Antarctic Sponge-Associated Bacteria against Pseudomonas aeruginosa and Staphylococcus aureus. JMSE. 2021, 9, 243.
  • R. S, R.; R. Muduli, P.; Vishnu Vardhan, K.; Ganguly, D.; R Abhilash, K.; Balasubramanian, T. Heavy Metal Contamination and Risk Assessment in the Marine Environment of Arabian Sea, along the Southwest Coast of India. Chemistry. 2012, 2, 191–208.
  • Holding, A.; Collee, J. Routine Biochemical Tests. Methods Microbiol. A. 1971, 6, 2–32.
  • Dey, U.; Chatterjee, S.; Mondal, N. K. Isolation and Characterization of Arsenic-Resistant Bacteria and Possible Application in Bioremediation. Biotechnol. Rep. 2016, 10, 1–7.
  • Bruno, W. J.; Socci, N. D.; Halpern, A. L. Weighted Neighbor Joining: A Likelihood-Based Approach to Distance-Based Phylogeny Reconstruction. Mol. Biol. Evol. 2000, 17, 189–197.
  • Srikanth, R.; Siddartha, G.; Reddy, C. H. S.; Harish, B.; Ramaiah, M. J.; Uppuluri, K. B. Antioxidant and anti-Inflammatory Levan Produced from Acetobacter Xylinum NCIM2526 and Its Statistical Optimization. Carbohydr. Polym. 2015, 123, 8–16.
  • Sran, K. S.; Bisht, B.; Mayilraj, S.; Choudhury, A. R. Structural Characterization and Antioxidant Potential of a Novel Anionic Exopolysaccharide Produced by Marine Microbacterium aurantiacum FSW-25. Int. J. Biol. Macromol. 2019, 131, 343–352.
  • Sujithra, B.; Deepika, S.; Akshaya, K.; Ponnusami, V. Production and Optimization of Xanthan Gum from Three-Step Sequential Enzyme Treated Cassava Bagasse Hydrolysate. Biocatal. Agric. Biotechnol. 2019, 21, 101294.
  • Gupta, S. K.; Sarkar, B.; Bhattacharjee, S.; Kumar, N.; Naskar, S.; Uppuluri, K. B. Modulation of Cytokine Expression by Dietary Levan in the Pathogen Aggravated Rohu, Labeo Rohita Fingerlings. Aquaculture. 2018, 495, 496–505.
  • Aullybux, A. A.; Puchooa, D.; Bahorun, T.; Jeewon, R. Phylogenetics and Antibacterial Properties of Exopolysaccharides from Marine Bacteria Isolated from Mauritius Seawater. Ann. Microbiol. 2019, 69, 957–972.
  • Kumar, M. A.; Anandapandian, K. T. K.; Parthiban, K. Production and Characterization of Exopolysaccharides (EPS) from Biofilm Forming Marine Bacterium. Braz. Arch. Biol. Technol. 2011, 54, 259–265.
  • Xu, Z.; Liang, Y.; Lin, S.; Chen, D.; Li, B.; Li, L.; Deng, Y. Crystal Violet and XTT Assays on Staphylococcus aureus Biofilm Quantification. Curr. Microbiol. 2016, 73, 474–482.
  • Singh, N.; Patil, A.; Prabhune, A.; Goel, G. Inhibition of Quorum-Sensing-Mediated Biofilm Formation in Cronobacter sakazakii Strains. Microbiology. 2016, 162, 1708–1714.
  • Nithya, C.; Devi, M. G.; Karutha Pandian, S. A Novel Compound from the Marine Bacterium Bacillus pumilus S6-15 Inhibits Biofilm Formation in Gram-Positive and Gram-Negative Species. Biofouling. 2011, 27, 519–528.
  • Lalitha, K.; Sandeep, M.; Prasad, Y. S.; Sridharan, V.; Maheswari, C. U.; Srinandan, C.; Nagarajan, S. Intrinsic Hydrophobic Antibacterial Thin Film from Renewable Resources: Application in the Development of anti-Biofilm Urinary Catheters. ACS Sustainable Chem. Eng. 2017, 5, 436–4491.
  • Busse, H.-J. Review of the Taxonomy of the Genus Arthrobacter, Emendation of the Genus Arthrobacter Sensu Lato, Proposal to Reclassify Selected Species of the Genus Arthrobacter in the Novel Genera Glutamicibacter Gen. nov., Paeniglutamicibacter Gen. nov., Pseudoglutamicibacter Gen. nov., Paenarthrobacter Gen. nov. and Pseudarthrobacter Gen. nov., and Emended Description of Arthrobacter roseus. Int. J. Syst. Evol. Microbiol. 2016, 66, 9–37.
  • Feng, W.-W.; Wang, T.-T.; Bai, J.-L.; Ding, P.; Xing, K.; Jiang, J.-H.; Peng, X.; Qin, S. Glutamicibacter halophytocola sp. nov., an Endophytic Actinomycete Isolated from the Roots of a Coastal Halophyte, Limonium Sinense. Int. J. Syst. Evol. Microbiol. 2017, 67, 1120–1125.
  • Aarti, C.; Khusro, A.; Agastian, P. Goat Dung as a Feedstock for Hyper-Production of Amylase from Glutamicibacter arilaitensis Strain ALA4. Bioresour. Bioprocess. 2017, 4, 43.
  • Satpute, S. K.; Banat, I. M.; Dhakephalkar, P. K.; Banpurkar, A. G.; Chopade, B. A. Biosurfactants, Bioemulsifiers and Exopolysaccharides from Marine Microorganisms. Biotechnol. Adv. 2010, 28, 436–450.
  • Doghri, I.; Portier, E.; Desriac, F.; Zhao, J. M.; Bazire, A.; Dufour, A.; Rochette, V.; Sablé, S.; Lanneluc, I. Anti-Biofilm Activity of a Low Weight Proteinaceous Molecule from the Marine Bacterium Pseudoalteromonas sp. IIIA004 against Marine Bacteria and Human Pathogen Biofilms. Microorganisms. 2020, 8, 1295.
  • Soundararajan, D.; Natarajan, L.; Trilokesh, C.; Harish, B.; Ameen, F.; Islam, M. A.; Uppuluri, K. B.; Anbazhagan, V. Isolation of Exopolysaccharide, Galactan from Marine Vibrio sp. BPM 19 to Template the Synthesis of Antimicrobial Platinum Nanocomposite. Process Biochem. 2022, 122, 267–274.
  • Rajitha, K.; Nancharaiah, Y.; Venugopalan, V. Role of Bacterial Biofilms and Their EPS on Settlement of Barnacle (Amphibalanus Reticulatus) Larvae. Int. Biodeterior. Biodegradation. 2020, 150, 104958.
  • Zhou, W.; Wang, J.; Shen, B.; Hou, W.; Zhang, Y. Biosorption of Copper (II) and Cadmium (II) by a Novel Exopolysaccharide Secreted from Deep-Sea Mesophilic Bacterium. Colloids Surf. B Biointerfaces. 2009, 72, 295–302.
  • Arias, S.; Del Moral, A.; Ferrer, M. R.; Tallon, R.; Quesada, E.; Bejar, V. Mauran, an Exopolysaccharide Produced by the Halophilic Bacterium Halomonas maura, with a Novel Composition and Interesting Properties for Biotechnology. Extremophiles. 2003, 7, 319–326.
  • Martínez-Cánovas, M. J.; Quesada, E.; Llamas, I.; Béjar, V. Halomonas ventosae sp. nov., a Moderately Halophilic, Denitrifying, Exopolysaccharide-Producing Bacterium. Int. J. Syst. Evol. Microbiol. 2004, 54, 733–737.
  • Poli, A.; Anzelmo, G.; Nicolaus, B. Bacterial Exopolysaccharides from Extreme Marine Habitats: production, Characterization and Biological Activities. Mar Drugs. 2010, 8, 1779–1802.
  • López-Ortega, M. A.; Chavarría-Hernández, N.; del Rocío López-Cuellar, M.; Rodríguez-Hernández, A. I. A Review of Extracellular Polysaccharides from Extreme Niches: An Emerging Natural Source for the Biotechnology. From the Adverse to Diverse!. Int. J. Biol. Macromol. 2021, 177, 559–577.
  • VanFossen, A. L.; Lewis, D. L.; Nichols, J. D.; Kelly, R. M. Polysaccharide Degradation and Synthesis by Extremely Thermophilic Anaerobes. Ann. NY Acad. Sci. 2008, 1125, 322–337.
  • Li, Y.; Li, Q.; Hao, D.; Jiang, D.; Luo, Y.; Liu, Y.; Zhao, Z. Production, Purification, and Antibiofilm Activity of a Novel Exopolysaccharide from Arthrobacter sp. B4. Prep. Biochem. Biotechnol. 2015, 45, 192–204.
  • Novak, J. S.; Tanenbaum, S.; Nakas, J. Heteropolysaccharide Formation by Arthrobacter viscosus Grown on Xylose and Xylose Oligosaccharides. Appl. Environ. Microbiol. 1992, 58, 3501–3507.
  • Senchenkova, S. N.; Knirel, Y. A.; Likhosherstov, L. M.; Shashkov, A. S.; Shibaev, V. N.; Starukhina, L. A.; Deryabin, V. V. Structure of Simusan, a New Acidic Exopolysaccharide from Arthrobacter sp. Carbohydr. Res. 1995, 266, 103–113.
  • Daba, G. M.; Elnahas, M. O.; Elkhateeb, W. A. Contributions of Exopolysaccharides from Lactic Acid Bacteria as Biotechnological Tools in Food, Pharmaceutical, and Medical Applications. Int. J. Biol. Macromol. 2021, 173, 79–89.
  • Shukla, A.; Mehta, K.; Parmar, J.; Pandya, J.; Saraf, M. Depicting the Exemplary Knowledge of Microbial Exopolysaccharides in a Nutshell. Eur. Polym. J. 2019, 119, 298–310.
  • Li, Y.; Li, Q.; Fengying, Y.; Bao, J.; Hu, Z.; Zhu, W.; Zhao, Y.; Lin, Z.; Dong, Q. Chromium (VI) Detoxification by Oxidation and Flocculation of Exopolysaccharides from Arthrobacter sp. B4. Int. J. Biol. Macromol. 2015, 81, 235–240.
  • Nie, S. P.; Cui, S. W.; Phillips, A. O.; Xie, M. Y.; Phillips, G. O.; Al-Assaf, S.; Zhang, X. L. Elucidation of the Structure of a Bioactive Hydrophilic Polysaccharide from Cordyceps Sinensis by Methylation Analysis and NMR Spectroscopy. Carbohydr. Polym. 2011, 84, 894–899.
  • Kavita, K.; Singh, V. K.; Mishra, A.; Jha, B. Characterisation and anti-Biofilm Activity of Extracellular Polymeric Substances from Oceanobacillus iheyensis. Carbohydr. Polym. 2014, 101, 29–35.
  • Wu, S.; Liu, G.; Jin, W.; Xiu, P.; Sun, C. Antibiofilm and anti-Infection of a Marine Bacterial Exopolysaccharide against Pseudomonas aeruginosa. Front. Microbiol. 2016, 7, 102.
  • Forni, C.; Haegi, A.; Gallo, M.; Grilli Caiola, M. Production of Polysaccharides by Arthrobacter globiformis Associated with Anabaena Azollae in Azolla Leaf Cavity. FEMS Microbiol. Lett. 1992, 93, 269–273.
  • Mancuso Nichols, C.; Garon, S.; Bowman, J.; Raguénès, G.; Guezennec, J. Production of Exopolysaccharides by Antarctic Marine Bacterial Isolates. J. Appl. Microbiol. 2004, 96, 1057–1066.
  • Jiang, P.; Li, J.; Han, F.; Duan, G.; Lu, X.; Gu, Y.; Yu, W. Antibiofilm Activity of an Exopolysaccharide from Marine Bacterium Vibrio sp. QY101. PLOS One. 2011, 6, e18514.
  • Spanò, A.; Laganà, P.; Visalli, G.; Maugeri, T. L.; Gugliandolo, C. In Vitro Antibiofilm Activity of an Exopolysaccharide from the Marine Thermophilic Bacillus licheniformis T14. Curr. Microbiol. 2016, 72, 518–528.
  • Guzzo, F.; Scognamiglio, M.; Fiorentino, A.; Buommino, E.; D’Abrosca, B. Plant Derived Natural Products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm Activity and Molecular Mechanisms. Molecules. 2020, 25, 5024.
  • Palomares-Navarro, J. J.; Bernal-Mercado, A. T.; González-Aguilar, G. A.; Ortega-Ramirez, L. A.; Martínez-Téllez, M. A.; Ayala-Zavala, J. F. Antibiofilm Action of Plant Terpenes in Salmonella Strains: Potential Inhibitors of the Synthesis of Extracellular Polymeric Substances. Pathogens. 2022, 12, 35.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.