170
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Improvement of lipopeptide production in Bacillus subtilis HNDF2-3 by overexpression of the sfp and comA genes

, , , &

References

  • Théatre, A.; Cano-Prieto, C.; Bartolini, M.; Laurin, Y.; Deleu, M.; Niehren, J.; Fida, T.; Gerbinet, S.; Alanjary, M.; Medema, M. H.; et al. The Surfactin-Like Lipopeptides from Bacillus Spp.: Natural Biodiversity and Synthetic Biology for a Broader Application Range. Front. Bioeng. Biotechnol. 2021, 9, 623701.
  • Zhao, P.; Xue, Y.; Li, X.; Li, J.; Zhao, Z.; Quan, C.; Gao, W.; Zu, X.; Bai, X.; Feng, S. Fungi-Derived Lipopeptide Antibiotics Developed Since 2000. Peptides. 2019, 113, 52–65.
  • Ferreira, W. T.; Hong, H. A.; Hess, M.; Adams, J. R.; Wood, H.; Bakun, K.; Tan, S.; Baccigalupi, L.; Ferrari, E.; Brisson, A.; et al. Micellar Antibiotics of Bacillus. Pharmaceutics. 2021, 13, 1296.
  • Mnif, I.; Ghribi, D. Review Lipopeptides Biosurfactants: Mean Classes and New Insights for Industrial, Biomedical, and Environmental Applications. Biopolymers. 2015, 104, 129–147.
  • Ravindran, A.; Kiran, G. S.; Selvin, J. Revealing the Effect of Lipopeptide on Improving the Probiotics Characteristics: Flavor and Texture Enhancer in the Formulated Yogurt. Food Chem. 2022, 375, 131718.
  • Villa-Rodriguez, E.; Moreno-Ulloa, A.; Castro-Longoria, E.; Parra-Cota, F. I.; de Los SantosVillalobos, S. Integrated Omits Approaches for Deciphering Antifungal Metabolites Produced by a Novel Bacillus Species, B. cabrialesii TE3T, Against the Spot Blotch Disease of Wheat (Triticum Turgidum L. subsp. durum). Microbiol. Res. 2021, 251, 126826.
  • Biria, D. Tailored Lipopeptide Surfactants as Potentially Effective Drugs to Treat SARS-CoV-2 Infection. Med. Hypotheses. 2022, 167, 110948.
  • Tathong, S.; Muangchinda, C.; Kongsuwan, C.; Khondee, N.; Luepromchai, E.; Soonglerdsongpha, S.; Ruangchainikom, C.; Pinyakong, O. Production of Lipopeptide Biosurfactant by Bacillus subtilis GY19 and Its Application as Oil-Contaminated Surface Cleaning Agent. Science Asia. 2022, 48, 43–50.
  • Wang, Y.; Wu, S.; Wang, H.; Dong, Y.; Li, X.; Wang, S.; Fan, H.; Zhuang, X. Optimization of Conditions for a Surfactant-Producing Strain and Application to Petroleum Hydrocarbon-Contaminated Soil Bioremediation. Colloids Surf. B Biointerf. 2022, 213, 112428.
  • Roldán-Carrillo, T.; Castorena-Cortés, G.; Álvarez-Ramírez, F.; Vázquez-Moreno, F.; Olguín-Lora, P. Lipopeptide Production by Serratia marcescens SmSA Using a Taguchi Design and Its Application in Enhanced Heavy Oil Recovery. Prep. Biochem. Biotechnol. 2022, 52, 872–884.
  • Jiang, J.; Han, M.; Fu, S.; Du, J.; Wang, S.; Zhang, H.; Li, W. Enhanced Production of Iturin A-2 Generated from Bacillus velezensis T701 and the Antitumor Activity of Iturin A-2 against Human Gastric Carcinoma Cells. Int. J. Pept. Res. Ther. 2022, 28, 27.
  • Tongcumpou, C.; Tuntiwiwattanapun, N. Developing a Cloud Point Extraction Process for Lipopeptide Recovery from Cell-Free Broth of Bacillus sp. GY19. Sep. Sci. Technol. 2022, 57, 2763–2771.
  • Chen, W.; Li, X.; Ma, X.; Chen, S.; Kang, Y.; Yang, M.; Huang, F.; Wan, X. Simultaneous Hydrolysis with Lipase and Fermentation of Rapeseed Cake for Iturin a Production by Bacillus amyloliquefaciens CX-20. BMC Biotechnol. 2019, 19, 1–10.
  • Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front. Microbiol. 2019, 10, 302.
  • Duban, M.; Cociancich, S.; Leclère, V. Nonribosomal Peptide Synthesis Definitely Working out of the Rules. Microorganisms. 2022, 10, 577.
  • Zhang, T.; Zhou, Q. Using Large-Scale Multi-Module NRPS to Heterologously Prepare Highly Efficient Lipopeptide Biosurfactants in Recombinant Escherichia coli. Enzyme Microb. Technol. 2022, 159, 110068.
  • Chen, Y. C.; Hu, Z.; Zhang, W. B.; Yin, Y.; Zhong, C. Y.; Mo, W. Y.; Yu, Y. H.; Ma, J. C.; Wang, H. H. HetI-like Phosphopantetheinyl Transferase Posttranslationally Modifies Acyl Carrier Proteins in Xanthomonas Spp. Mol. Plant Microbe Interact. 2022, 35, 323–335.
  • Jin, P.; Wang, H.; Liu, W.; Miao, W. Characterization of lpaH2 Gene Corresponding to Lipopeptide Synthesis in Bacillus amyloliquefaciens HAB-2. BMC Microbiol. 2017, 17, 227.
  • Zhang, S.; Fan, S.; Zhu, J.; Zhou, L.; Yan, X.; Yang, Z.; Si, T.; Liu, T. Enhanced Rishirilide Biosynthesis by a Rare in-Cluster Phosphopantetheinyl Transferase in Streptomyces xanthophaeus. Microbiol. Spectr. 2022, 10, e03247-22.
  • Wang, S.; Wang, R.; Zhao, X.; Ma, G.; Liu, N.; Zheng, Y.; Tan, J.; Qi, G. Systemically Engineering Bacillus amyloliquefaciens for Increasing Its Antifungal Activity and Green Antifungal Lipopeptides Production. Front. Bioeng. Biotechnol. 2022, 10, 961535.
  • Tan, W.; Yin, Y.; Wen, J. Increasing Fengycin Production by Strengthening the Fatty Acid Synthesis Pathway and Optimizing Fermentation Conditions. Biochem. Eng. J. 2022, 177, 108235.
  • Xu, K.; Tong, Y.; Li, Y.; Tao, J.; Rao, S.; Li, J.; Zhou, J.; Liu, S. Efficient, Flexible Autoinduction Expression Systems with Broad Initiation in Bacillus subtilis. ACS Synth. Biol. 2021, 10, 3084–3093.
  • Yuan, P.; Sun, G.; Cui, S.; Wu, Y.; Lv, X.; Liu, Y.; Li, J.; Du, G.; Liu, L. Engineering a ComA Quorum-Sensing Circuit to Dynamically Control the Production of Menaquinone-4 in Bacillus subtilis. Enzyme Microb. Tech. 2021, 147, 109782.
  • Deng, X.; Tian, Y.; Niu, Q.; Xu, X. E.; Shi, H.; Zhang, H.; Liang, L.; Zhang, K.; Huang, X. The ComP-ComA Quorum System is Essential for “Trojan Horse” like Pathogenesis in Bacillus Nematocida. PLOS One 2013, 8, e76920.
  • Comella, N.; Grossman, A. D. Conservation of Genes and Processes Controlled by the Quorum Response in Bacteria: Characterization of Genes Controlled by the Quorum-Sensing Transcription Factor ComA in Bacillus subtilis. Mol. Microbiol. 2005, 57, 1159–1174.
  • Liang, Z.; Qiao, J.-Q.; Li, P.-P.; Zhang, L.-L.; Qiao, Z.-X.; Lin, L.; Yu, C.-J.; Yang, Y.; Zubair, M.; Gu, Q.; et al. A Novel Rap-Phr System in Bacillus velezensis NAU-B3 Regulates Surfactin Production and Sporulation via Interaction with ComA. Appl. Microbiol. Biotechnol. 2020, 104, 10059–10074.
  • Xu, Y.; Cai, D.; Zhang, H.; Gao, L.; Yang, Y.; Gao, J.; Li, Y.; Yang, C.; Ji, J.; Yu, J.; et al. Enhanced Production of Iturin a in Bacillus amyloliquefaciens by Genetic Engineering and Medium Optimization. Process Biochem. 2020, 90, 50–57.
  • Sun, J.; Liu, Y.; Lin, F.; Lu, Z.; Lu, Y. CodY, ComA, DegU and Spo0A Controlling Lipopeptides Biosynthesis in Bacillus amyloliquefaciens fmbJ. J. Appl. Microbiol. 2021, 131, 1289–1304.
  • Zhang, Z.; Ding, Z. T.; Zhong, J.; Zhou, J. Y.; Shu, D.; Luo, D.; Yang, J.; Tan, H. Improvement of Iturin a Production in Bacillus subtilis ZK0 by Overexpression of the comA and sigA Genes. Lett. Appl. Microbiol. 2017, 64, 452–458.
  • Chen, H.; Wang, L.; Su, C. X.; Gong, G. H.; Wang, P.; Yu, Z. L. Isolation and Characterization of Lipopeptide Antibiotics Produced by Bacillus subtilis. Lett. Appl. Microbiol. 2008, 47, 180–186.
  • Dogsa, I.; Choudhary, K. S.; Marsetic, Z.; Hudaiberdiev, S.; Vera, R.; Pongor, S.; Mandic-Mulec, I. ComQXPA Quorum Sensing Systems May Not Be Unique to Bacillus subtilis: A Census in Prokaryotic Genomes. PLOS One 2014, 9, e96122.
  • Oslizlo, A.; Stefanic, P.; Vatovec, S.; Beigot Glaser, S.; Rupnik, M.; Mandic-Mulec, I. Exploring ComQXPA Quorum‐Sensing Diversity and Biocontrol Potential of Bacillus Spp. Isolates from Tomato Rhizoplane. Microb. Biotechnol. 2015, 8, 527–540.
  • Silva, M.; Rosado, T.; Teixeira, D.; Candeias, A.; Caldeira, A. T. Green Mitigation Strategy for Cultural Heritage: Bacterial Potential for Biocide Production. Environ. Sci. Pollut. Res. Int. 2017, 24, 4871–4881.
  • Sun, J.; Qian, S.; Lu, J.; Liu, Y.; Lu, F.; Bie, X.; Lu, Z. Knockout of rapC Improves the Bacillomycin D Yield Based on De Novo Genome Sequencing of Bacillus amyloliquefaciens fmbJ. J. Agric. Food Chem. 2018, 66, 4422–4430.
  • Tsuge, K.; Akiyama, T.; Shoda, M. Cloning, Sequencing, and Characterization of the Iturin a Operon. J. Bacteriol. 2001, 183, 6265–6273.
  • Dang, Y.; Zhao, F.; Liu, X.; Fan, X.; Huang, R.; Gao, W.; Wang, S.; Yang, C. Enhanced Production of Antifungal Lipopeptide Iturin a by Bacillus amyloliquefaciens LL3 through Metabolic Engineering and Culture Conditions Optimization. Microb. Cell Fact. 2019, 18, 1–14.
  • Wang, Q.; Yu, H.; Wang, M.; Yang, H.; Shen, Z. Enhanced Biosynthesis and Characterization of Surfactin Isoforms with Engineered Bacillus subtilis through Promoter Replacement and Vitreoscilla Hemoglobin Co-Expression. Process. Biochem. 2018, 70, 36–44.
  • Meng, Y.; Zhao, W.; You, J.; Gang, H.; Liu, J.; Yang, S.; Ye, R.; Mu, B. Structural Analysis of the Lipopeptide Produced by the Bacillus subtilis Mutant R2-104 with Mutagenesis. Appl. Biochem. Biotechnol. 2016, 179, 973–985.
  • Zhou, Z.; Zhang, W.; Zhang, R.; Dang, Y.; Quan, Y.; Wang, S. Metabolic Engineering of Bacillus Amyloliquefaciens to Improve Surfactin Production. Acta Sci. Nat. Univ. Nankaiensis. 2018, 51, 18–26.
  • Jin, J.; Yin, Y.; Wang, X.; Wen, J. Metabolic Engineering of Bacillus subtilis 168 for the Utilization of Arabinose to Synthesize the Antifungal Lipopeptide Fengycin. Biochem. Eng. J. 2022, 185, 108528.
  • Wu, Q.; Zhi, Y.; Xu, Y. Systematically Engineering the Biosynthesis of a Green Biosurfactant Surfactin by Bacillus subtilis 168. Metab. Eng. 2019, 52, 87–97.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.