139
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Targeting of human fibroblast growth factor receptor 2 by a novel specific nanobody

, , &

References

  • Ornitz, D. M.; Xu, J.; Colvin, J. S.; McEwen, D. G.; MacArthur, C. A.; Coulier, F.; Gao, G.; Goldfarb, M. Receptor Specificity of the Fibroblast Growth Factor Family. J. Biol. Chem. 1996, 271, 15292–15297. DOI: 10.1074/jbc.271.25.15292.
  • Brooks, A. N.; Kilgour, E.; Smith, P. D. Molecular Pathways: Fibroblast Growth Factor Signaling: A New Therapeutic Opportunity in Cancer FGF/FGFR Signaling in Cancer. Clin. Cancer Res. 2012, 18, 1855–1862. DOI: 10.1158/1078-0432.CCR-11-0699.
  • Tamburello, M.; Altieri, B.; Sbiera, I.; Sigala, S.; Berruti, A.; Fassnacht, M.; Sbiera, S. FGF/FGFR Signaling in Adrenocortical Development and Tumorigenesis: Novel Potential Therapeutic Targets in Adrenocortical Carcinoma. Endocrine 2022, 77, 411–418. DOI: 10.1007/s12020-022-03074-z.
  • Francavilla, C.; O'Brien, C. S. Fibroblast Growth Factor Receptor Signalling Dysregulation and Targeting in Breast Cancer. Open Biol. 2022, 12, 210373. DOI: 10.1098/rsob.210373.
  • André, F.; Cortés, J. Rationale for Targeting Fibroblast Growth Factor Receptor Signaling in Breast Cancer. Breast Cancer Res. Treat. 2015, 150, 1–8. DOI: 10.1007/s10549-015-3301-y.
  • Helsten, T.; Elkin, S.; Arthur, E.; Tomson, B. N.; Carter, J.; Kurzrock, R. The FGFR Landscape in Cancer: Analysis of 4853 Tumors by Next-Generation SequencingFGFR Aberrations in Cancer. Clin. Cancer Res. 2016, 22, 259–267. DOI: 10.1158/1078-0432.CCR-14-3212.
  • Katoh, M.; Nakagama, H. FGF Receptors: Cancer Biology and Therapeutics. Med. Res. Rev. 2014, 34, 280–300. DOI: 10.1002/med.21288.
  • Lee, S. H.; Lopes de Menezes, D.; Vora, J.; Harris, A.; Ye, H.; Nordahl, L.; Garrett, E.; Samara, E.; Aukerman, S. L.; Gelb, A. B.; et al. In Vivo Target Modulation and Biological Activity of CHIR-258, a Multitargeted Growth Factor Receptor Kinase Inhibitor, in Colon Cancer Models. Clin. Cancer Res. 2005, 11, 3633–3641. DOI: 10.1158/1078-0432.CCR-04-2129.
  • Porta, R.; Borea, R.; Coelho, A.; Khan, S.; Araújo, A.; Reclusa, P.; Franchina, T.; Van Der Steen, N.; Van Dam, P.; Ferri, J.; et al. FGFR a Promising Druggable Target in Cancer: Molecular Biology and New Drugs. Crit. Rev. Oncol. Hematol. 2017, 113, 256–267. DOI: 10.1016/j.critrevonc.2017.02.018.
  • Yang, E. Y.; Shah, K. Nanobodies: Next Generation of Cancer Diagnostics and Therapeutics. Front. Oncol. 2020, 10, 1182. DOI: 10.3389/fonc.2020.01182.
  • Muyldermans, S.; Baral, T. N.; Retamozzo, V. C.; De Baetselier, P.; De Genst, E.; Kinne, J.; Leonhardt, H.; Magez, S.; Nguyen, V. K.; Revets, H.; et al. Camelid Immunoglobulins and Nanobody Technology. Vet. Immunol. Immunopathol. 2009, 128, 178–183. DOI: 10.1016/j.vetimm.2008.10.299.
  • Karami, E.; Sabatier, J.-M.; Behdani, M.; Irani, S.; Kazemi-Lomedasht, F. A Nanobody-Derived Mimotope against VEGF Inhibits Cancer Angiogenesis. J. Enzyme Inhib. Med. Chem. 2020, 35, 1233–1239. DOI: 10.1080/14756366.2020.1758690.
  • Sadeghi, A.; Behdani, M.; Muyldermans, S.; Habibi-Anbouhi, M.; Kazemi-Lomedasht, F. Development of a Mono‐Specific Anti‐VEGF Bivalent Nanobody with Extended Plasma Half‐Life for Treatment of Pathologic Neovascularization. Drug Test. Anal. 2020, 12, 92–100. DOI: 10.1002/dta.2693.
  • Bagheri, M.; Babaei, E.; Shahbazzadeh, D.; Habibi-Anbouhi, M.; Alirahimi, E.; Kazemi-Lomedasht, F.; Behdani, M. Development of a Recombinant Camelid Specific Diabody against the Heminecrolysin Fraction of Hemiscorpius Lepturus Scorpion. Toxin Rev. 2017, 36, 7–11. DOI: 10.1080/15569543.2016.1244552.
  • Roshan, R.; Naderi, S.; Behdani, M.; Cohan, R. A.; Ghaderi, H.; Shokrgozar, M. A.; Golkar, M.; Kazemi-Lomedasht, F. Isolation and Characterization of Nanobodies against Epithelial Cell Adhesion Molecule as Novel Theranostic Agents for Cancer Therapy. Mol. Immunol. 2021, 129, 70–77. DOI: 10.1016/j.molimm.2020.10.021.
  • Roshan, R.; Naderi, S.; Behdani, M.; Ahangari Cohan, R.; Kazemi-Lomedasht, F. A Novel Immunotoxin Targeting Epithelial Cell Adhesion Molecule Using Single Domain Antibody Fused to Diphtheria Toxin. Mol. Biotechnol. 2023, 65, 637–644. DOI: 10.1007/s12033-022-00565-2.
  • Naderi, S.; Roshan, R.; Ghaderi, H.; Behdani, M.; Mahmoudi, S.; Habibi-Anbouhi, M.; Shokrgozar, M. A.; Kazemi-Lomedasht, F. Selection and Characterization of Specific Nanobody against Neuropilin-1 for Inhibition of Angiogenesis. Mol. Immunol. 2020, 128, 56–63. DOI: 10.1016/j.molimm.2020.10.004.
  • Naderi, S.; Roshan, R.; Behdani, M.; Kazemi-Lomedasht, F. Inhibition of Neovascularisation in Human Endothelial Cells Using anti NRP-1 Nanobody Fused to Truncated Form of Diphtheria Toxin as a Novel Immunotoxin. Immunopharmacol. Immunotoxicol. 2021, 43, 230–238. DOI: 10.1080/08923973.2021.1888114.
  • Kazemi-Lomedasht, F.; Behdani, M.; Bagheri, K. P.; Habibi-Anbouhi, M.; Abolhassani, M.; Arezumand, R.; Shahbazzadeh, D.; Mirzahoseini, H. Inhibition of Angiogenesis in Human Endothelial Cell Using VEGF Specific Nanobody. Mol. Immunol. 2015, 65, 58–67. DOI: 10.1016/j.molimm.2015.01.010.
  • Jia, Y.; Xu, H.; Li, Y.; Wei, C.; Guo, R.; Wang, F.; Wu, Y.; Liu, J.; Jia, J.; Yan, J.; et al. A Modified Ficoll-Paque Gradient Method for Isolating Mononuclear Cells from the Peripheral and Umbilical Cord Blood of Humans for Biobanks and Clinical Laboratories. Biopreserv. Biobank. 2018, 16, 82–91. DOI: 10.1089/bio.2017.0082.
  • Oghalaie, A.; Mahboudi, F.; Rahimi-Jamnani, F.; Piri-Gavgani, S.; Kazemi-Lomedasht, F.; Hassanzadeh Eskafi, A.; Shahbazzadeh, D.; Adeli, A.; Talebkhan, Y.; Behdani, M. Development and Characterization of Single Domain Monoclonal Antibody against Programmed Cell Death Ligand-1; as a Cancer Inhibitor Candidate. Iran. J. Basic Med. Sci. 2022, 25, 313.
  • Baharlou, R.; Tajik, N.; Behdani, M.; Shokrgozar, M. A.; Tavana, V.; Kazemi-Lomedasht, F.; Faraji, F.; Habibi-Anbouhi, M. An Antibody Fragment against Human Delta-like Ligand-4 for Inhibition of Cell Proliferation and Neovascularization. Immunopharmacol. Immunotoxicol. 2018, 40, 368–374. DOI: 10.1080/08923973.2018.1505907.
  • Ahadi, M.; Ghasemian, H.; Behdani, M.; Kazemi-Lomedasht, F. Oligoclonal Selection of Nanobodies Targeting Vascular Endothelial Growth Factor. J. Immunotoxicol. 2019, 16, 34–42. DOI: 10.1080/1547691X.2018.1526234.
  • Karami, E.; Mesbahi Moghaddam, M.; Behdani, M.; Kazemi-Lomedasht, F. Effective Blocking of Neuropilin-1activity Using Oligoclonal Nanobodies Targeting Different Epitopes. Prep. Biochem. Biotechnol. 2023, 53, 523–531. DOI: 10.1080/10826068.2022.2111583.
  • Beatty, J. D.; Beatty, B. G.; Vlahos, W. G. Measurement of Monoclonal Antibody Affinity by Non-Competitive Enzyme Immunoassay. J. Immunol. Methods. 1987, 100, 173–179. DOI: 10.1016/0022-1759(87)90187-6.
  • Mohseni, N.; Roshan, R.; Naderi, S.; Behdani, M.; Kazemi-Lomedasht, F. In Vitro Combination Therapy of Pathologic Angiogenesis Using Anti-Vascular Endothelial Growth Factor and Anti-Neuropilin-1 Nanobodies. Iran. J. Basic Med. Sci. 2020, 23, 1335.
  • Karami, E.; Naderi, S.; Roshan, R.; Behdani, M.; Kazemi-Lomedasht, F. Targeted Therapy of Angiogenesis Using Anti-VEGFR2 and Anti-NRP-1 Nanobodies. Cancer Chemother. Pharmacol. 2022, 89, 165–172. DOI: 10.1007/s00280-021-04372-5.
  • Catenacci, D. V.; Tesfaye, A.; Tejani, M.; Cheung, E.; Eisenberg, P.; Scott, A. J.; Eng, C.; Hnatyszyn, J.; Marina, N.; Powers, J.; et al. Bemarituzumab with Modified FOLFOX6 for Advanced FGFR2-Positive Gastroesophageal Cancer: FIGHT Phase III Study Design. Future Oncol. 2019, 15, 2073–2082. DOI: 10.2217/fon-2019-0141.
  • Bai, A.; Meetze, K.; Vo, N. Y.; Kollipara, S.; Mazsa, E. K.; Winston, W. M.; Weiler, S.; Poling, L. L.; Chen, T.; Ismail, N. S.; et al. GP369, an FGFR2-IIIb–Specific Antibody, Exhibits Potent Antitumor Activity against Human Cancers Driven by Activated FGFR2 Signaling In Vivo Efficacy of GP369 in FGFR2-Amplified Tumors. Cancer Res. 2010, 70, 7630–7639. DOI: 10.1158/0008-5472.CAN-10-1489.
  • Zhao, W.; Wang, L.; Park, H.; Chhim, S.; Tanphanich, M.; Yashiro, M.; Kim, K. J. Monoclonal Antibodies to Fibroblast Growth Factor Receptor 2 Effectively Inhibit Growth of Gastric Tumor Xenografts Anti–FGFR2 mAbs Inhibit Gastric Tumor Xenografts. Clin. Cancer Res. 2010, 16, 5750–5758. DOI: 10.1158/1078-0432.CCR-10-0531.
  • Pierce, K. L.; Deshpande, A. M.; Stohr, B. A.; Gemo, A. T.; Patil, N. S.; Brennan, T. J.; Bellovin, D. I.; Palencia, S.; Giese, T.; Huang, C.; et al. FPA144, a Humanized Monoclonal Antibody for Both FGFR2-Amplified and Nonamplified, FGFR2b-Overexpressing Gastric Cancer Patients; American Society of Clinical Oncology, 2014.
  • Salvador, J.; Vilaplana, L.; Marco, M. Nanobody: Outstanding Features for Diagnostic and Therapeutic Applications. Anal. Bioanal. Chem. 2019, 411, 1703–1713. DOI: 10.1007/s00216-019-01633-4.
  • Kazemi-Lomedasht, F.; Muyldermans, S.; Habibi-Anbouhi, M.; Behdani, M. Design of a Humanized Anti Vascular Endothelial Growth Factor Nanobody and Evaluation of Its In Vitro Function. Iran. J. Basic Med. Sci. 2018, 21, 260.
  • Kazemi-Lomedasht, F.; Behdani, M.; Habibi-Anbouhi, M.; Shahbazzadeh, D. Production and Characterization of Novel Camel Single Domain Antibody Targeting Mouse Vascular Endothelial Growth Factor. Monoclon. Antib. Immunodiagn. Immunother. 2016, 35, 167–171. DOI: 10.1089/mab.2016.0001.
  • Wu, X. Y.; Xu, H.; Wu, Z. F.; Chen, C.; Liu, J. Y.; Wu, G. N.; Yao, X. Q.; Liu, F. K.; Li, G.; Shen, L.; et al. Formononetin, a Novel FGFR2 Inhibitor, Potently Inhibits Angiogenesis and Tumor Growth in Preclinical Models. Oncotarget 2015, 6, 44563–44578. DOI: 10.18632/oncotarget.6310.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.