224
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Multi-functional xylanase from Aspergillus sydowii: biosynthesis of nanoconjugates, optimization by Taguchi approach and biodeinking potential

, ORCID Icon, , &

References

  • Ahmed, S. A.; Saleh, S. A.; Mostafa, F. A.; Abd El Aty, A. A.; Ammar, H. A. Characterization and Valuable Applications of Xylanase from Endophytic Fungus Aspergillus terreus KP900973 Isolated from Corchorus olitorius. Biocatal. Agric. Biotechnol. 2016, 7, 134–144. DOI: 10.1016/j.bcab.2016.05.015.
  • Walia, A.; Guleria, S.; Mehta, P.; Chauhan, A.; Parkash, J. Microbial Xylanases and Their Industrial Application in Pulp and Paper Biobleaching: A Review. 3 Biotech 2017, 7, 11. DOI: 10.1007/s13205-016-0584-6.
  • Lateef, A.; Oloke, J. K.; Gueguim-Kana, E. B.; Raimi, O. R. Production of Fructosyltransferase by a Local Isolate of Aspergillus niger in Both Submerged and Solid Substrate Media. Acta Alimentaria 2012, 41, 100–117. DOI: 10.1556/AAlim.41.2012.1.12.
  • Elegbede, J. A.; Ajayi, V. A.; Lateef, A. Microbial Valorization of Corncob: Novel Route for Biotechnological Products for Sustainable Bioeconomy. Environ. Technol. Innov. 2021, 24, 102073. DOI: 10.1016/j.eti.2021.102073.
  • Adeoye, A. O.; Lateef, A. Biotechnological Valorization of Cashew Apple Juice for the Production of Citric Acid by a Local Strain of Aspergillus niger LCFS 5. J. Genet. Eng. Biotechnol. 2021, 19, 137. DOI: 10.1186/s43141-021-00232-0.
  • Ajayi, V. A.; Lateef, A. Biotechnological Valorization of Agrowastes for Circular Bioeconomy: Melon Seed Shell, Groundnut Shell and Groundnut Peel. Clean. Circ. Bioeconomy 2023, 4, 100039. DOI: 10.1016/j.clcb.2023.100039.
  • Malhotra, G.; Chapadgaonkar, S. S. Taguchi Optimization and Scale up of Xylanase from Bacillus licheniformis Isolated from Hot Water Geyser. J. Genet. Eng. Biotechnol. 2020, 18, 65. DOI: 10.1186/s43141-020-00084-0.
  • Elegbede, J. A.; Lateef, A. Valorization of Corn-Cob by Fungal Isolates for Production of Xylanase in Submerged and Solid State Fermentation Media and Potential Biotechnological Applications. Waste Biomass Valor. 2018, 9, 1273–1287. DOI: 10.1007/s12649-017-9932-y.
  • Alokika; Singh, B. Production, Characteristics, and Biotechnological Applications of Microbial Xylanases. Appl. Microbiol. Biotechnol. 2019, 103, 8763–8784. DOI: 10.1007/s00253-019-10108-6.
  • Chaudhary, R.; Kuthiala, T.; Singh, G.; Rarotra, S.; Kaur, A.; Arya, S. K.; Kumar, P. Current Status of Xylanase for Biofuel Production: A Review on Classification and Characterization. Biomass Conv. Bioref. 2023, 13, 8773–8791. DOI: 10.1007/s13399-021-01948-2.
  • Elegbede, J. A.; Lateef, A.; Azeez, M. A.; Asafa, T. B.; Yekeen, T. A.; Oladipo, I. C.; Adebayo, E. A.; Beukes, L. S.; Gueguim-Kana, E. B. Fungal Xylanases-Mediated Synthesis of Silver Nanoparticles for Catalytic and Biomedical Applications. IET Nanobiotechnol. 2018, 12, 857–863. DOI: 10.1049/iet-nbt.2017.0299.
  • Elegbede, J. A.; Lateef, A.; Azeez, M. A.; Asafa, T. B.; Yekeen, T. A.; Oladipo, I. C.; Hakeem, A. S.; Beukes, L. S.; Gueguim‑Kana, E. B. Silver‑Gold Alloy Nanoparticles Biofabricated by Fungal Xylanases Exhibited Potent Biomedical and Catalytic Activities. Biotechnol. Prog. 2019, 35, e2829. DOI: 10.1002/btpr.2829.
  • Elegbede, J. A.; Lateef, A.; Azeez, M. A.; Asafa, T. B.; Yekeen, T. A.; Oladipo, I. C.; Aina, D. A.; Beukes, L. S.; Gueguim-Kana, E. B. Biofabrication of Gold Nanoparticles Using Xylanases through Valorization of Corncob by Aspergillus niger and Trichoderma longibrachiatum: Antimicrobial, Antioxidant, Anticoagulant and Thrombolytic Activities. Waste Biomass Valor. 2020, 11, 781–791. DOI: 10.1007/s12649-018-0540-2.
  • Elegbede, J. A.; Lateef, A. Microbial Enzymes in Nanotechnology and Fabrication of Nanozymes: A Perspective. In Microbial Nanobiotechnology: Principles and Applications; Lateef, A., Gueguim-Kana, E. B., Dasgupta, N., Ranjan, S., Eds.; Springer Nature Singapore Pte. Ltd., 2021. DOI: 10.1007/978-981-33-4777-9_7. Pp.185–232.
  • Taiwan News. Xylanase Market Size to Surpass 1,292.8 Mn in Value by 2033, CAGR of 5.9%.” Maximize Market Research PVT. LTD, 2023. https://www.taiwannews.com.tw/en/news/4855380. (accessed Jun 13, 2023).
  • Devi, S.; Dwivedi, D.; Bhatt, A. K. Utilization of Agroresidues for the Production of Xylanase by Bacillus safensis XPS7 and Optimization of Production Parameters. Fermentation 2022, 8, 221. DOI: 10.3390/fermentation8050221.
  • Sanusi, I. A.; Suinyuy, T. N.; Lateef, A.; Gueguim-Kana, E. B. Effect of Nickel Oxide Nanoparticles on Bioethanol Production: Process Optimization, Kinetic and Metabolic Studies. Process Biochem. 2020, 92, 386–400. DOI: 10.1016/j.procbio.2020.01.029.
  • Adeoye, A. O.; Lateef, A. Improving the Yield of Citric Acid through Valorization of Cashew Apple Juice by Aspergillus niger: Mutation, Nanoparticles Supplementation and Taguchi Technique. Waste Biomass Valor. 2022, 13, 2195–2206. DOI: 10.1007/s12649-021-01646-0.
  • Elegbede, J. A.; Lateef, A. Optimization of the Production of Xylanases in Corncob Based Media by Aspergillus niger and Trichoderma longibrachiatum Using Taguchi Approach. Acta Biol. Szeged. 2019, 63, 51–58. DOI: 10.14232/abs.2019.1.51-58.
  • Cheng, Y.; Bi, X.; Xu, Y.; Liu, Y.; Li, J.; Du, G.; Lv, X.; Liu, L. Artificial Intelligence Technologies in Bioprocess: Opportunities and Challenges. Bioresour. Technol. 2023, 369, 128451. DOI: 10.1016/j.biortech.2022.128451.
  • Rani, G. B.; Chiranjeevi, T.; Chandel, A. K.; Satish, T.; Radhika, K.; Narasu, M. L.; Uma, A. Optimization of Selective Production Media for Enhanced Production of Xylanases in Submerged Fermentation by Thielaviopsis basicola MTCC 1467 Using L16 Orthogonal Array. J. Food Sci. Technol. 2014, 51, 2508–2516. DOI: 10.1007/s13197-012-0784-y.
  • Sunkar, B.; Kannoju, B.; Bhukya, B. Optimized Production of Xylanase by Penicillium purpurogenum and Ultrasound Impact on Enzyme Kinetics for the Production of Monomeric Sugars from Pretreated Corn Cobs. Front. Microbiol. 2020, 11, 772. DOI: 10.3389/fmicb.2020.00772.
  • Taiwo, A. E.; Madzimbamuto, T. N.; Ojumu, T. V. Optimization of Process Variables for Acetoin Production in a Bioreactor Using Taguchi Orthogonal Array Design. Heliyon 2020, 6, e05103. DOI: 10.1016/j.heliyon.2020.e05103.
  • Sosa-Martínez, J.; Balagurusamy, N.; Benavente-Valdés, J. R.; Montanez, J.; Morales-Oyervides, L. Process Performance Improvement for the Simultaneous Production of Ligninolytic Enzymes in Solid Culture Using Agricultural Wastes through the Taguchi Method. J. Environ. Manage. 2021, 293, 112966. DOI: 10.1016/j.jenvman.2021.112966.
  • Mata-Gómez, L. C.; Mapelli-Brahm, P.; Meléndez-Martínez, A. J.; Méndez-Zavala, A.; Morales-Oyervides, L.; Montañez, J. Microbial Carotenoid Synthesis Optimization in Goat Cheese Whey Using the Robust Taguchi Method: A Sustainable Approach to Help Tackle Vitamin a Deficiency. Foods 2023, 12, 658. DOI: 10.3390/foods12030658.
  • Kim, Y. K.; Park, S. E.; Lee, H.; Yun, J. Y. Enhancement of Bioethanol Production in Syngas Fermentation with Clostridium ljungdahlii Using Nanoparticles. Bioresour. Technol. 2014, 159, 446–450. DOI: 10.1016/j.biortech.2014.03.046.
  • Kim, Y. K.; Lee, H. Use of Magnetic Nanoparticles to Enhance Bioethanol Production in Syngas Fermentation. Bioresour. Technol. 2016, 204, 139–144. DOI: 10.1016/j.biortech.2016.01.001.
  • Labbeiki, G.; Attar, H.; Heydarinasab, A.; Sorkhabadi, S.; Rashidi, A. Enhanced Oxygen Transfer Rate and Bioprocess Yield by Using Magnetite Nanoparticles in Fermentation Media of Erythromycin. Daru 2014, 22, 66. DOI: 10.1186/s40199-014-0066-5.
  • Ebrahiminezhad, A.; Varma, V.; Yang, S.; Berenjian, A. Magnetic Immobilization of Bacillus subtilis Natto Cells for Menaquinone-7 Fermentation. Appl. Microbiol. Biotechnol. 2016, 100, 173–180. DOI: 10.1007/s00253-015-6977-3.
  • Srivastava, N.; Hussain, A.; Kushwaha, D.; Haque, S.; Mishra, P. K.; Gupta, V. K.; Srivastava, M. Nickel Ferrite Nanoparticles Induced Improved Fungal Cellulase Production Using Residual Algal Biomass and Subsequent Hydrogen Production following Dark Fermentation. Fuel 2021, 304, 121391. DOI: 10.1016/j.fuel.2021.121391.
  • Bell, J. R. A Simple Way to Treat PCR Products Prior to Sequencing Using ExoSAP-IT®. Biotechniques 2008, 44, 834. DOI: 10.2144/000112890.
  • Sridevi, B.; Charya, M. S. Isolation, Identification and Screening of Potential Cellulase-Free Xylanase Producing Fungi. Afr. J. Biotechnol. 2011, 10, 4624–4630. DOI: 10.5897/AJB11.2356.
  • Bailey, M. J.; Biely, P.; Poutanen, K. Interlaboratory Testing for Methods of Assay of Xylanase Activity. J. Biotechnol. 1992, 23, 257–270. DOI: 10.1016/0168-1656(92)90074-J.
  • Fu, L.; Fu, Z. Plectranthus amboinicus Leaf Extract–Assisted Biosynthesis of ZnO Nanoparticles and Their Photocatalytic Activity. Ceram. Int. 2015, 41, 2492–2496. DOI: 10.1016/j.ceramint.2014.10.069.
  • Taguchi, G. Introduction to Quality Engineering: Designing Quality into Products and Processes; Asian Productivity Organization, American Supplier Institute: Dearborn, MI, 1986. http://worldcat.org/isbn/9283310845.
  • Roushdy, M. M. Biodeinking of Photocopier Waste Paper Effluent by Fungal Cellulase under Solid State Fermentation. JABB. 2015, 2, 190–199. DOI: 10.9734/JABB/2015/15378.
  • Adhyaru, D. N.; Bhatt, N. S.; Modi, H. A.; Divecha, J. Cellulase-Free-Thermo-Alkali-Solvent Stable Xylanase from Bacillus altitudinis DHN8: Over-Production through Statistical Approach, Purification and Bio-Deinking/Bio-Bleaching Potential. Biocatal. Agric. Biotechnol. 2017, 12, 220–227. DOI: 10.1016/j.bcab.2017.10.010.
  • Prabu, P. C.; Udayasoorian, C. Biodecolorization of Phenolic Paper Mill Effluent by Ligninolytic Fungus Trametes versicolor. J. Biol. Sci. 2005, 5, 558–561. DOI: 10.3923/jbs.2005.558.561.
  • APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, 2005.
  • de Alencar Guimaraes, N. C.; Sorgatto, M.; Peixoto-Nogueira, S. D. C.; Betini, J. H. A.; Zanoelo, F. F.; Marques, M. R.; de Moraes Polizeli, M. D. L. T.; Giannesi, G. C. Bioprocess and Biotechnology: Effect of Xylanase from Aspergillus niger and Aspergillus flavus on Pulp Biobleaching and Enzyme Production Using Agroindustrial Residues as Substrate. Springerplus. 2013, 2, 380. DOI: 10.1186/2193-1801-2-380.
  • Singh, A.; Yadav, R. D.; Kaur, A.; Mahajan, R. An Ecofriendly Cost Effective Enzymatic Methodology for Deinking of School Waste Paper. Bioresour. Technol. 2012, 120, 322–327. DOI: 10.1016/j.biortech.2012.06.050.
  • Wang, S.; Guo, L.; Zhu, X.; Wang, Y.; Fan, H.; Duan, Y.; Chen, L. Toxicity of Fungus Snef210 against Meloidogyne incognita in Tomato. Plant Protect. 2018, 44, 55–60. DOI: 10.16688/j.zwbh.2018045.
  • Ganaie, M. A.; Lateef, A.; Gupta, U. S. Enzymatic Trends of Fructooligosaccharides Production by Microorganisms. Appl. Biochem. Biotechnol. 2014, 172, 2143–2159. DOI: 10.1007/s12010-013-0661-9.
  • Ben Taher, I.; Bennour, H.; Fickers, P.; Hassouna, M. Valorization of Potato Peels Residues on Cellulase Production Using a Mixed Culture of Aspergillus niger ATCC 16404 and Trichoderma reesei DSMZ 970. Waste Biomass Valor. 2017, 8, 183–192. DOI: 10.1007/s12649-016-9558-5.
  • Vera-Cabrera, L.; Cardenas-de la Garza, J. A.; Cuellar-Barboza, A.; Gallardo-Rocha, A.; Molina-Torres, C. A.; Escalante-Fuentes, W.; Ocampo-Candiani, J. Case Report: Coral Reef Pathogen Aspergillus sydowii Causing Black Grain Mycetoma. Am. J. Trop. Med. Hyg. 2021, 104, 871–873. DOI: 10.4269/ajtmh.20-1352.
  • Chung, D.; Kim, H.; Choi, H. S. Fungi in Salterns. J. Microbiol. 2019, 57, 717–724. DOI: 10.1007/s12275-019-9195-3.
  • Liu, N.; Peng, S.; Yang, J.; Cong, Z.; Lin, X.; Liao, S.; Yang, B.; Zhou, X.; Zhou, X.; Liu, Y.; Wang, J. Structurally Diverse Sesquiterpenoids and Polyketides from a Sponge-Associated Fungus Aspergillus sydowii SCSIO41301. Fitoterapia 2019, 135, 27–32. DOI: 10.1016/j.fitote.2019.03.031.
  • Brandt, S. C.; Ellinger, B.; van Nguyen, T.; Thi, Q. D.; Van Nguyen, G.; Baschien, C.; Yurkov, A.; Hahnke, R. L.; Schäfer, W.; Gand, M. A Unique Fungal Strain Collection from Vietnam Characterized for High Performance Degraders of Bioecological Important Biopolymers and Lipids. PLoS One. 2018, 13, e0202695. DOI: 10.1371/journal.pone.0202695.
  • Brandt, S. C.; Ellinger, B.; Van Nguyen, T.; Harder, S.; Schlüter, H.; Hahnke, R. L.; Rühl, M.; Schäfer, W.; Gand, M. Aspergillus sydowii: Genome Analysis and Characterization of Two Heterologous Expressed, Non-Redundant Xylanases. Front. Microbiol. 2020, 11, 2154. DOI: 10.3389/fmicb.2020.573482.
  • Nair, S. G.; Sindhu, R.; Shashidhar, S. Purification and Biochemical Characterization of Two Xylanases from Aspergillus sydowii SBS 45. Appl. Biochem. Biotechnol. 2008, 149, 229–243. DOI: 10.1007/s12010-007-8108-9.
  • Nair, S. G.; Sindhu, R.; Shashidhar, S. Enzymatic Bleaching of Kraft Pulp by Xylanase from Aspergillus sydowii SBS 45. Indian J. Microbiol. 2010, 50, 332–338. DOI: 10.1007/s12088-010-0049-2.
  • Nwokoro, O.; Uwa, S. G. Production of Xylanase from Aspergillus sydowii Isolated from Irvingia gabonensis (African Mango) Fruit. Bio-Research 2016, 13, 889–896. DOI: 10.4314/br.v13i1.144796.
  • Tulsani, N. J.; Jakhesara, S. J.; Hinsu, A. T.; Jyotsana, B.; Dafale, N. A.; Patil, N. V.; Purohit, H. J.; Joshi, C. G. Genome Analysis and CAZy Repertoire of a Novel Fungus Aspergillus sydowii C6d with Lignocellulolytic Ability Isolated from Camel Rumen. Electron. J. Biotechnol. 2022, 59, 36–45. DOI: 10.1016/j.ejbt.2022.06.004.
  • Mohammad, N. S.; Ariffin, Z. Z. Aspergillus sydowii Strain scau066 and Aspergillus versicolor Isolate Bab-6580: Potential Source of Xylanolytic, Cellulolytic and Amylolytic Enzymes. Sci. Lett. 2020, 14, 15–23.
  • Ghazala, I.; Haddar, A.; Romdhane, M. B.; Ellouz-Chaanouni, S. Screening and Molecular Identification of New Microbial Strains for Production of Enzymes of Biotechnological Interest. Braz. Arch. Biol. Technol. 2016, 59, e16150152. DOI: 10.1590/1678-4324-2016150152.
  • Santos, B. S. L. D.; Gomes, A. F. S.; Franciscon, E. G.; Oliveira, J. M. D.; Baffi, M. A. Thermotolerant and Mesophylic Fungi from Sugarcane Bagasse and Their Prospection for Biomass-Degrading Enzyme Production. Braz. J. Microbiol. 2015, 46, 903–910. DOI: 10.1590/S1517-838246320140393.
  • Seemakram, W.; Suebrasri, T.; Khaekhum, S.; Ekprasert, J.; Boonlue, S. Enhancement of Integrated Sugarcane Trash Managements by co-Inoculation of Cellulolytic Microorganisms for Sustaining Soil Fertility. Sugar Tech. 2023, 25, 925–937. DOI: 10.1007/s12355-023-01250-7.
  • Ire, F. S.; Chima, I. J.; Ezebuiro, V. Enhanced Xylanase Production from UV-Mutated Aspergillus niger Grown on Corn Cob and Sawdust. Biocatal. Agric. Biotechnol. 2021, 31, 101869. DOI: 10.1016/j.bcab.2020.101869.
  • Nagar, S.; Mittal, A.; Gupta, V. K. A Cost Effective Method for Screening and Isolation of Xylan Degrading Bacteria Using Agro Waste Material. Asian J. Biol Sci. 2012, 5, 384–394. DOI: 10.3923/ajbs.2012.384.394.
  • Yegin, S. Xylanase Production by Aureobasidium pullulans on Globe Artichoke Stem: Bioprocess Optimization, Enzyme Characterization and Application in Saccharification of Lignocellulosic Biomass. Prep. Biochem. Biotechnol. 2017, 47, 441–449. DOI: 10.1080/10826068.2016.1224245.
  • Ijaz, U.; Bhatti, I. A.; Mirza, S.; Ashar, A. Characterization and Evaluation of Antibacterial Activity of Plant Mediated Calcium Oxide (CaO) Nanoparticles by Employing Mentha pipertia Extract. Mater. Res. Express 2017, 4, 105402. DOI: 10.1088/2053-1591/aa8603.
  • Marquis, G.; Ramasamy, B.; Banwarilal, S.; Munusamy, A. P. Evaluation of Antibacterial Activity of Plant Mediated CaO Nanoparticles Using Cissus quadrangularis Extract. J. Photochem. Photobiol. B 2016, 155, 28–33. DOI: 10.1016/j.jphotobiol.2015.12.013.
  • Siripireddy, B.; Mandal, B. K. Facile Green Synthesis of Zinc Oxide Nanoparticles by Eucalyptus globulus and Their Photocatalytic and Antioxidant Activity. Adv. Powder Technol. 2017, 28, 785–797. DOI: 10.1016/j.apt.2016.11.026.
  • Azizi, S.; Mohamad, R.; Bahadoran, A.; Bayat, S.; Rahim, R. A.; Ariff, A.; Saad, W. Z. Effect of Annealing Temperature on Antimicrobial and Structural Properties of Bio-Synthesized Zinc Oxide Nanoparticles Using Flower Extract of Anchusa italica. J. Photochem. Photobiol. B 2016, 161, 441–449. DOI: 10.1016/j.jphotobiol.2016.06.007.
  • Mahendiran, D.; Subash, G.; Selvan, D. A.; Rehana, D.; Kumar, R. S.; Rahiman, A. K. Biosynthesis of Zinc Oxide Nanoparticles Using Plant Extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, Antibacterial, Antioxidant and Anti-Proliferative Studies. BioNanoScience 2017, 7, 530–545. DOI: 10.1007/s12668-017-0418-y.
  • Sumathi, N. Optical Characterization of Calcium Oxide Nanoparticles. Int. J. Adv. Technol. Eng. Sci. 2017, 5, 63–67.
  • Ramola, B.; Joshi, N. C.; Ramola, M.; Chhabra, J.; Singh, A. Green Synthesis, Characterisations and Antimicrobial Activities of CaO Nanoparticles. Orient. J. Chem. 2019, 35, 1154–1157. DOI: 10.13005/ojc/350333.
  • Bano, S.; Pillai, S. Green Synthesis of Calcium Oxide Nanoparticles at Different Calcination Temperatures. World J. Sci. Technol. Sustain. Dev. 2020, 17, 283–295. DOI: 10.1108/WJSTSD-12-2019-0087.
  • Murali, M.; Mahendra, C.; Rajashekar, N.; Sudarshana, M. S.; Raveesha, K. A.; Amruthesh, K. N.; Nagabhushan. Antibacterial and Antioxidant Properties of Biosynthesized Zinc Oxide Nanoparticles from Ceropegia candelabrum L.–an Endemic Species. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 179, 104–109. DOI: 10.1016/j.saa.2017.02.027.
  • Dobrucka, R.; Długaszewska, J. Biosynthesis and Antibacterial Activity of ZnO Nanoparticles Using Trifolium pratense Flower Extract. Saudi J. Biol. Sci. 2016, 23, 517–523. DOI: 10.1016/j.sjbs.2015.05.016.
  • Supraja, N.; Prasad, T. N. V. K. V.; Krishna, T. G.; David, E. Synthesis, Characterization, and Evaluation of the Antimicrobial Efficacy of Boswellia ovalifoliolata Stem Bark-Extract-Mediated Zinc Oxide Nanoparticles. Appl. Nanosci. 2016, 6, 581–590. DOI: 10.1007/s13204-015-0472-0.
  • Suresh, D.; Shobharani, R. M.; Nethravathi, P. C.; Kumar, M. P.; Nagabhushana, H.; Sharma, S. C. Artocarpus gomezianus Aided Green Synthesis of ZnO Nanoparticles: Luminescence, Photocatalytic and Antioxidant Properties. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2015, 141, 128–134. DOI: 10.1016/j.saa.2015.01.048.
  • Lateef, A.; Adelere, I. A.; Gueguim-Kana, E. B.; Asafa, T. B.; Beukes, L. S. Green Synthesis of Silver Nanoparticles Using Keratinase Obtained from a Strain of Bacillus safensis LAU 13. Int. Nano Lett. 2015, 5, 29–35. DOI: 10.1007/s40089-014-0133-4.
  • Adelere, I. A.; Lateef, A. A Novel Approach to the Green Synthesis of Metallic Nanoparticles: The Use of Agro-Wastes, Enzymes and Pigments. Nanotechnol. Rev. 2016, 5, 567–587. DOI: 10.1515/ntrev-2016-0024.
  • Morán-Aguilar, M. G.; Calderón-Santoyo, M.; Domínguez, J. M.; Aguilar-Uscanga, M. G. Optimization of Cellulase and Xylanase Production by Aspergillus niger CECT 2700 Using Brewery Spent Grain Based on Taguchi Design. Biomass Conv. Bioref. 2023, 13, 7983–7991. DOI: 10.1007/s13399-021-01808-z.
  • Uday, U. S. P.; Goswami, S.; Gopikrishna, K.; Bandyopadhyay, T. K.; Bhunia, B. Identification of Markers at Various Stages of Batch Fermentation and Improved Production of Xylanase Using Aspergillus niger (KP874102.1). 3 Biotech 2018, 8, 337. DOI: 10.1007/s13205-018-1363-3.
  • Gautam, A.; Kumar, A.; Bharti, A. K.; Dutt, D. Rice Straw Fermentation by Schizophyllum Commune ARC-11 to Produce High Level of Xylanase for Its Application in Pre-Bleaching. J. Genet. Eng. Biotechnol. 2018, 16, 693–701. DOI: 10.1016/j.jgeb.2018.02.006.
  • Ibarra, D.; Concepción Monte, M.; Blanco, A.; Martínez, A. T.; Martínez, M. J. Enzymatic Deinking of Secondary Fibers: Cellulases/Hemicellulases versus Laccase-Mediator System. J. Ind. Microbiol. Biotechnol. 2012, 39, 1–9. DOI: 10.1007/s10295-011-0991-y.
  • Kumar, S.; Haq, I.; Prakash, J.; Singh, S. K.; Mishra, S.; Raj, A. Purification, Characterization and Thermostability Improvement of Xylanase from Bacillus amyloliquefaciens and Its Application in Pre-Bleaching of Kraft Pulp. 3 Biotech 2017, 7, 20. DOI: 10.1007/s13205-017-0615-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.