104
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Optimization of phytase production by Penicillium oxalicum in solid-state fermentation for potential as a feed additive

, ORCID Icon, & ORCID Icon

References

  • Arora, S.; Dubey, M.; Singh, P.; Rani, R.; Ghosh, S. Effect of Mixing Events on the Production of a Thermo-Tolerant and Acid-Stable Phytase in a Novel Solid-State Fermentation Bioreactor. Process. Biochem. 2017, 61, 12–23. DOI: 10.1016/j.procbio.2017.06.009.
  • Buddhiwant, P.; Bhavsar, K.; Kumar, V. R.; Khire, J. M. Phytase Production by Solid-State Fermentation of Groundnut Oil Cake by Aspergillus niger: A Bioprocess Optimization Study for Animal Feedstock Applications. Prep. Biochem. Biotechnol. 2016, 46, 531–538. DOI: 10.1080/10826068.2015.1045606.
  • Chanderman, A.; Puri, A. K.; Permaul, K.; Singh, S. Production, Characteristics and Applications of Phytase from a Rhizosphere Isolated Enterobacter sp. ACSS. Bioprocess Biosyst. Eng. 2016, 39, 1577–1587. DOI: 10.1007/s00449-016-1632-7.
  • Corrêa, T. L. R.; de Queiroz, M. V.; de Araújo, E. F. Cloning, Recombinant Expression and Characterization of a New Phytase from Penicillium chrysogenum. Microbiol. Res. 2015, 170, 205–212. DOI: 10.1016/j.micres.2014.06.005.
  • Coutinho, T. C.; Tardioli, P. W.; Farinas, C. S. Phytase Immobilization on Hydroxyapatite Nanoparticles Improves Its Properties for Use in Animal Feed. Appl. Biochem. Biotechnol. 2020, 190, 270–292. DOI: 10.1007/s12010-019-03116-9.
  • Dahiya, S.; Kumar, A.; Singh, B. Enhanced Endoxylanase Production by Myceliophthora thermophila Using Rice Straw and Its Synergism with Phytase in Improving Nutrition. Process. Biochem. 2020, 94, 235–242. DOI: 10.1016/j.procbio.2020.04.032.
  • Elkhateeb, Y. A.; Fadel, M. Bioinformatic Studies, Experimental Validation of Phytase Production and Optimization of Fermentation Conditions for Enhancing Phytase Enzyme Production by Different Microorganisms under Solid-State Fermentation. TOMICROJ. 2022, 16, 1–11. DOI: 10.2174/18742858-v16-e2202160.
  • Fiske, C. H.; Subbarow, Y. The Colorimetric Determination of Phosphorus. J. Biol. Chem. 1925, 66, 375–400. DOI: 10.1016/S0021-9258(18)84756-1.
  • Hussain, S. M.; Hanif, S.; Sharif, A.; Bashir, F.; Iqbal, H. M. N. Unrevealing the Sources and Catalytic Functions of Phytase with Multipurpose Characteristics. Catal. Lett. 2021, 152, 1358–1371. DOI: 10.1007/s10562-021-03752-z.
  • Jain, J.; Kumar, A.; Singh, D.; Singh, B. Purification and Kinetics of a Protease-Resistant, Neutral, and Thermostable Phytase from Bacillus subtilis Subsp. subtilis JJBS250 Ameliorating Food Nutrition. Prep. Biochem. Biotechnol. 2018, 48, 718–724. DOI: 10.1080/10826068.2018.1487848.
  • Jain, J.; Singh, B. Phytase Production and Development of an Ideal Dephytinization Process for Amelioration of Food Nutrition Using Microbial Phytases. Appl. Biochem. Biotechnol. 2017, 181, 1485–1495. DOI: 10.1007/s12010-016-2297-z.
  • Jatuwong, K.; Kumla, J.; Suwannarach, N.; Matsui, K.; Lumyong, S. Bioprocessing of Agricultural Residues as Substrates and Optimal Conditions for Phytase Production of Chestnut Mushroom, Pholiota adiposa, in Solid State Fermentation. J. Fungi (Basel) 2020, 6, 384. DOI: 10.3390/jof6040384.
  • Joshi, S.; Satyanarayana, T. Bioprocess for Efficient Production of Recombinant Pichia anomala Phytase and Its Applicability in Dephytinizing Chick Feed and Whole Wheat Flat Indian Breads. J. Ind. Microbiol. Biotechnol. 2015, 42, 1389–1400. DOI: 10.1007/s10295-015-1670-1.
  • Kim, B. H.; Lee, J. Y.; Lee, P. C. Purification, Sequencing and Evaluation of a Divergent Phytase from Penicillium oxalicum KCTC6440. J. Gen. Appl. Microbiol. 2015, 61, 117–123. DOI: 10.2323/jgam.61.117.
  • Kumari, N.; Bansal, S. Production and Characterization of a Novel, Thermotolerant Fungal Phytase from Agro-Industrial Byproducts for Cattle Feed. Biotechnol. Lett. 2021, 43, 865–879. DOI: 10.1007/s10529-020-03069-8.
  • Kumari, N.; Bansal, S. Statistical Modeling and Optimization of Microbial Phytase Production towards Utilization as a Feed Supplement. Biomass Conv. Bioref. 2021, 13, 8339–8349. DOI: 10.1007/s13399-021-01672-x.
  • Kumari, A.; Satyanarayana, T.; Singh, B. Mixed Substrate Fermentation for Enhanced Phytase Production by Thermophilic Mould Sporotrichum thermophile and Its Application in Beneficiation of Poultry Feed. Appl. Biochem. Biotechnol. 2016, 178, 197–210. DOI: 10.1007/s12010-015-1868-8.
  • Lopes, M. M.; Coutinho, T. C.; Malafatti, J. O. D.; Paris, E. C.; de Sousa, C. P.; Farinas, C. S. Immobilization of Phytase on Zeolite Modified with Iron (II) for Use in the Animal Feed and Food Industry Sectors. Process. Biochem. 2021, 100, 260–271. DOI: 10.1016/j.procbio.2020.10.017.
  • Lowry, O.; Rosebrough, N.; Farr, A.; Randall, R. J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. DOI: 10.1016/S0021-9258(19)52451-6.
  • Mahendran, S.; Sankaralingam, S.; Maheswari, P.; Dhivya, R. R.; Kathiresan, D.; Karthikeyan, S.; Ramya, S. S.; Seethapathy, P.; Harinathan, B.; Palpperumal, S. Production, Characterization, and Feed Supplement Applications of Phytase Enzyme from Aspergillus tubingensis Isolated from Western Ghats Soil. Biomass Convers. Biorefinery. 2022, 1–11. DOI: 10.1007/s13399-022-02894-3.
  • Mahmood, S.; Shahid, M. G.; Nadeem, M. Screening of Phytate Degrading Fungi and Optimization of Culture Conditions for Phytase Synthesis Using Agro-Industrial by-Products. Pak. J. Bot. 2021, 53, 763–770. DOI: 10.30848/PJB2021-2(12).
  • Mahmood, S.; Shahid, M. G.; Nadeem, M.; Nelofer, R.; Irfan, M. Application of Statistical Design for the Economical Production of Phytase by Aspergillus niger Using Solid State Fermentation. J. Anim. Plant Sci. 2022, 32, 238–246. DOI: 10.36899/JAPS.2022.1.0419.
  • Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. DOI: 10.1021/ac60147a030.
  • Monteiro, P. S.; Guimarães, V. M.; Melo, R. R. D.; Rezende, S. T. D. Isolation of a Thermostable Acid Phytase from Aspergillus Niger UFV-1 with Strong Proteolysis Resistance. Braz. J. Microbiol. 2015, 46, 251–260. DOI: 10.1590/S1517-838220120037.
  • Neira-Vielma, A. A.; Aguilar, C. N.; Ilyina, A.; Contreras-Esquivel, J. C.; Carneiro-da-Cunha, M. D. G.; Michelena-Álvarez, G.; MartÃnez-Hernandez, J. L. Optimized Production of Phytase by Solid-State Fermentation Using Triticale as Substrate and Source of Inducer. Afr. J. Biotechnol. 2018, 17, 81–90. DOI: 10.5897/AJB2017.16267.
  • Onem, H.; Cicek, S.; Nadaroglu, H. Immobilization of a Thermostable Phytase from Pinar Melkior (Lactarius piperatus) onto Magnetite Chitosan Nanoparticles. CYTA J. Food. 2016, 14, 74–83. DOI: 10.1080/19476337.2015.1045942.
  • Pable, A. A.; Shah, S.; Ravi Kumar, V.; Khire, J. M. Use of Plackett–Burman Design for Enhanced Phytase Production by Williopsis saturnus NCIM 3298 for Applications in Animal Feed and Ethanol Production. 3 Biotech. 2019, 9, 237. DOI: 10.1007/s13205-019-1764-y.
  • Plackett, R. L.; Burman, J. P. The Design of Optimum Multi-Factor Experiments. Biometrika. 1946, 33, 305–325. DOI: 10.1093/biomet/33.4.305.
  • Priya; Virmani, I.; Pragya; Goswami, R. K.; Singh, B.; Sharma, J. G.; Giri, B. Role of Microbial Phytases in Improving Fish Health. Rev Aquac 2023, 15, 1480–1500. DOI: 10.1111/raq.12790.
  • Qasim, S. S.; Shakir, K. A.; Al-Shaibani, A. B. Isolation, Screening and Production of Phytate Degrading Enzyme (Phytase) from Local Fungi Isolate. Iraqi J. Agric. Sci. 2016, 47, 121–128.
  • Ranjan, B.; Satyanarayana, T. Recombinant HAP Phytase of the Thermophilic Mold Sporotrichum thermophile: expression of the Codon-Optimized Phytase Gene in Pichia pastoris and Applications. Mol. Biotechnol. 2016, 58, 137–147. DOI: 10.1007/s12033-015-9909-7.
  • Saxena, A.; Verma, M.; Singh, B.; Sangwan, P.; Yadav, A. N.; Dhaliwal, H. S.; Kumar, V. Characteristics of an Acidic Phytase from Aspergillus aculeatus APF1 for Dephytinization of Biofortified Wheat Genotypes. Appl. Biochem. Biotechnol. 2020, 191, 679–694. DOI: 10.1007/s12010-019-03205-9.
  • Sharma, Krishna Kant; Kumar, Sandeep; Singh, Davender; Kumar, Vijay; Singh, Bijender; Pragya; Manisha. Enhanced Production and Immobilization of Phytase from Aspergillus oryzae: A Safe and Ideal Food Supplement for Improving Nutrition. Lett. Appl. Microbiol. 2023, 76(2), ovac077. DOI: 10.1093/lambio/ovac077.
  • Sharma, Krishna Kant; Singh, Bijender; Pragya. Phytase from Aspergillus oryzae SBS50: Biocatalytic Reduction of Anti-Nutritional Factor and Exhibiting Vanadium-Dependent Haloperoxidase Activity. Biocatal. Agric. Biotechnol. 2023, 52, 102840. DOI: 10.1016/j.bcab.2023.102840.
  • Singh, Bijender; Boukhris, Ines; Kumar, Vinod; Yadav, Ajar Nath; Farhat-Khemakhem, Ameny; Kumar, Anil; Singh, Davender; Blibech, Monia; Chouayekh, Hichem; Alghamdi, Othman A.; Pragya. Contribution of Microbial Phytases to the Improvement of Plant Growth and Nutrition: A Review. Pedosphere. 2020, 30(3), 295–313. DOI: 10.1016/S1002-0160(20)60010-8.
  • Singh, Bijender; Sapna. Biocatalytic Potential of Protease-Resistant Phytase of Aspergillus oryzae SBS50 in Ameliorating Food Nutrition. Biocatal. Biotransform. 2015, 33(3), 167–174. DOI: 10.3109/10242422.2015.1076215.
  • Singh, Bijender; Sapna. Phytase Production by Aspergillus oryzae in Solid-State Fermentation and Its Applicability in Dephytinization of Wheat Bran. Appl. Biochem. Biotechnol. 2014, 173, 1885–1895. DOI: 10.1007/s12010-014-0974-3.
  • Singh, Bijender; Sapna. Purification and Characterization of a Protease-Resistant Phytase of Aspergillus oryzae SBS50 Whose Properties Make It Exceptionally Useful as a Feed Supplement. Int. J. Biol. Macromol. 2017, 103, 458–466. DOI: 10.1016/j.ijbiomac.2017.05.077.
  • Suresh, S.; Radha, K. V. Effect of a Mixed Substrate on Phytase Production by Rhizopus oligosporus MTCC 556 Using Solid State Fermentation and Determination of Dephytinization Activities in Food Grains. Food Sci. Biotechnol. 2015, 24, 551–559. DOI: 10.1007/s10068-015-0072-5.
  • Suresh, S.; Radha, K. V. Statistical Optimization and Mutagenesis for High Level of Phytase Production by Rhizopus oligosporus MTCC 556 under Solid State Fermentation. J. Environ. Biol. 2016, 37, 253.
  • Tan, H.; Tang, J.; Li, X.; Liu, T.; Miao, R.; Huang, Z.; Wang, Y.; Gan, B.; Peng, W. Biochemical Characterization of a Psychrophilic Phytase from an Artificially Cultivable Morel Morchella importuna. J. Microbiol. Biotechnol. 2017, 27, 2180–2189. DOI: 10.4014/jmb.1708.08007.
  • Thakur, N.; Patel, S. K.; Kumar, P.; Singh, A.; Devi, N.; Sandeep, K.; Pandey, D.; Chand, D. Bioprocess for Hyperactive Thermotolerant Aspergillus fumigatus Phytase and Its Application in Dephytinization of Wheat Flour. Catal. Lett. 2022, 152, 3220–3232. DOI: 10.1007/s10562-021-03886-0.
  • Thorsen, M.; Nielsen, L. A.; Zhai, H. X.; Zhang, Q.; Wulf-Andersen, L.; Skov, L. K. Safety and Efficacy Profile of a Phytase Produced by Fermentation and Used as a Feed Additive. Heliyon. 2021, 7, e07237. DOI: 10.1016/j.heliyon.2021.e07237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.