32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Isolation, characterization and optimization of oleaginous Providencia vermicola as a feedstock for biodiesel production using Response Surface Methodology

&

References

  • Kumar, M.; Thakur, I. S. Municipal Secondary Sludge as Carbon Source for Production and Characterization of Biodiesel from Oleaginous Bacteria. Bioresour. Technol. Rep. 2018, 4, 106–113. DOI: 10.1016/j.biteb.2018.09.011.
  • Kumar, M.; Rathour, R.; Gupta, J.; Pandey, A.; Gnansounou, E.; Thakur, I. S. Bacterial Production of Fatty Acid and Biodiesel: Opportunity and Challenges. In Refining Biomass Residues for Sustainable Energy and Bioproducts Technology, Chapter 2, 2020; pp 21–49. DOI: 10.1016/B978-0-12-818996-2.00002-8.
  • Sales, M. B.; Borges, P. T.; Ribeiro Filho, M. N.; Miranda da Silva, L. R.; Castro, A. P.; Sanders Lopes, A. A.; Chaves de Lima, R. K.; de Sousa Rios, M. A.; Santos, J. Sustainable Feedstocks and Challenges in Biodiesel Production: An Advanced Bibliometric Analysis. Bioeng. 2022, 9, 539. DOI: 10.3390/bioengineering9100539.
  • Cavalcante, F. T. T.; Neto, F. S.; Rafael de Aguiar Falcão, I.; Erick da Silva Souza, J.; de Moura Junior, L. S.; da Silva Sousa, P.; Rocha, T. G.; de Sousa, I. G.; de Lima Gomes, P. H.; de Souza, M. C. M.; dos Santos, J. C. S. Opportunities for Improving Biodiesel Production via Lipase Catalysis. Fuel. 2021, 288, 119577. DOI: 10.1016/j.fuel.2020.119577.
  • Gufrana, T.; Islam, H.; Khare, S.; Pandey, A.; P, R. In-Situ Transesterification of Single-Cell Oil for Biodiesel Production: A Review. Prep. Biochem. Biotechnol. 2023, 53, 120–135. DOI: 10.1080/10826068.2022.2065684.
  • Aron, N. S. M.; Khoo, K. S.; Chew, K. W.; Show, P. L.; Chen, W.-H.; Nguyen, T. H. P. Sustainability of the Four Generations of Biofuels – A Review. Int. J. Energy Res. 2020, 44, 9266–9282. DOI: 10.1002/er.5557.
  • Singh, D.; Sharma, D.; Soni, S. L.; Sharma, S.; Sharma, P. K.; Jhalani, A. A Review on Feedstocks, Production Processes, and Yield for Different Generations of Biodiesel. Fuel. 2020, 262, 116553. DOI: 10.1016/j.fuel.2019.116553.
  • Nathan, R. M.; Kelley, P.; Klaski, R.; Bosco, A.; Moore, B.; Traviss, N. Characterization and Comparison of Oxidative Potential of Real-World Biodiesel and Petroleum Diesel Particulate Matter Emitted from a Non-Road Heavy Duty Diesel Engine. Sci. Total Environ. 2019, 655, 908–914. DOI: 10.1016/j.scitotenv.2018.11.292.
  • Shah, A. M.; Hassan, M.; Zichen, Z.; Yuanda, S. Isolation, Characterization and Fatty Acid Analysis of Gilbertella Persicaria DSR1: A Potential New Source of High Value Single-Cell Oil. Biomass Bioenergy. 2021, 151, 106156. DOI: 10.1016/j.biombioe.2021.106156.
  • Carsanba, E.; Papanikolaou, S.; Erten, H. Production of Oils and Fats by Oleaginous Microorganisms with an Emphasis Given to the Potential of the Nonconventional Yeast Yarrowia lipolytica. Crit. Rev. Biotechnol. 2018, 38, 1230–1243. DOI: 10.1080/07388551.2018.1472065.
  • Dourou, M.; Aggeli, D.; Papanikolaou, S.; Aggelis, G. Critical Steps in Carbon Metabolism Affecting Lipid Accumulation and Their Regulation in Oleaginous Microorganisms. Appl. Microbiol. Biotechnol. 2018, 102, 2509–2523. DOI: 10.1007/s00253-018-8813-z.
  • Berikten, D.; Hosgun, E. Z.; Bozan, B.; Kivanc, M. Improving Lipid Production Capacity of New Natural Oleaginous Yeast: Pichia Cactophila Firstly. Biomass Conv. Bioref. 2022, 12, 1311–1321. DOI: 10.1007/s13399-021-01466-1.
  • Koreti, D.; Anjali, K.; Shailesh, K. J.; Nagendra, K. C. A Comprehensive Review on Oleaginous Bacteria: An Alternative Source for Biodiesel Production. Bioresour. Bioprocess. 2022, 9, 47. DOI: 10.1186/s40643-022-00527-1.
  • Wenjun, B.; Li, Z.; Xuemei, W.; Ruiling, G.; Xiaoqin, Z.; Shikun, C.; Yu, M.; Lei, Z. Approaches to Improve the Lipid Synthesis of Oleaginous Yeast Yarrowia lipolytica: A Review. Renew. Sust. Energ. Rev. 2021, 149, 111386. DOI: 10.1016/j.rser.2021.111386.
  • Abdelhamid, S. A.; Hussein, A. A.; Asker, M. S.; El Sayed, O. H.; Mohamed, S. S. Optimization of Culture Conditions for Biodiesel Production from Egyptian Isolate Penicillium Commune NRC2016. Bull. Natl. Res. Cent. 2019, 43, 15. DOI: 10.1186/s42269-019-0045-6.
  • Linder, T. Making the Case for Edible Microorganisms as an Integral Part of a More Sustainable and Resilient Food Production System. Food Sec. 2019, 11, 265–278. DOI: 10.1007/s12571-019-00912-3.
  • Zuccaro, G.; Pirozzi, D.; Yousuf, A. Lignocellulosic Biomass to Biodiesel. In Lignocellulosic biomass to liquid biofuels, Chapter 4, 2020; pp 127–167. DOI: 10.1016/B978-0-12-815936-1.00004-6.
  • Sharma, D.; Sharma, P.; Soni, P. First Case Report of Providencia rettgeri Neonatal Sepsis. BMC Res. Notes. 2017, 10, 536. DOI: 10.1186/s13104-017-2866-4.
  • Abdallah, M.; Balshi, A. First Literature Review of Carbapenem-Resistant Providencia. New Microbes New Infect. 2018, 25, 16–23. DOI: 10.1016/j.nmni.2018.05.009.
  • Mnif, B.; Ktari, S.; Chaari, A.; Medhioub, F.; Rhimi, F.; Bouaziz, M.; Hammami, A. Nosocomial Dissemination of Providencia stuartii Isolates Carrying blaOXA-48, blaPER-1, blaCMY-4 and qnrA6 in a Tunisian Hospital. J. Antimicrob. Chemother. 2013, 68, 329–332. DOI: 10.1093/jac/dks386.
  • Yuan, C.; Wei, Y.; Zhang, S.; Cheng, J.; Cheng, X.; Qian, C.; Wang, Y.; Zhang, Y.; Yin, Z.; Chen, H. Comparative Genomic Analysis Reveals Genetic Mechanisms of the Variety of Pathogenicity, Antibiotic Resistance, and Environmental Adaptation of Providencia Genus. Front. Microbiol. 2020, 11, 572642. DOI: 10.3389/fmicb.2020.572642.
  • Somvanshi, V. S.; Lang, E.; Sträubler, B.; Spröer, C.; Schumann, P.; Ganguly, S.; Saxena, A. K.; Stackebrandt, E. Providencia vermicola sp. nov., Isolated from Infective Juveniles of the Entomopathogenic Nematode Steinernema Thermophilum. Int. J. Syst. Evol. Microbiol. 2006, 56, 629–633. DOI: 10.1099/ijs.0.63973-0.
  • Thangavelu, K.; Sundararaju, P.; Srinivasan, N.; Uthandi, S. Bioconversion of Sago Processing Wastewater into Biodiesel: Optimization of Lipid Production by an Oleaginous Yeast, Candida tropicalis ASY2 and Its Transesterification Process Using Response Surface Methodology. Microb. Cell Fact. 2021, 20, 167. DOI: 10.1186/s12934-021-01655-7.
  • Ravikumar, K.; Dakshayini, J.; Girisha, S. T. Biodiesel Production from Oleaginous Fungi. Int. J. Life Sci. 2012, 6, 1.
  • Bligh, E. G.; Dyer, W. J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. DOI: 10.1139/o59-099.
  • Fawole, M. O.; Oso, B. A. Characterization of Bacteria. In: Laboratory Manual of Microbiology, 4th ed.; Spectrum Book Ltd., Ibadan, Nigeria, 2004; pp. 24–33.
  • Begum, K.; Mannan, S. J.; Rezwan, R.; Rahman, M. M.; Rahman, S. M.; A E-Kamal, A. N. Isolation and Characterization of Bacteria with Biochemical and Pharmacological Importance from Soil Samples of Dhaka City. Dhaka Univ. J. Pharm. Sci. 2017, 16, 129–136. DOI: 10.3329/dujps.v16i1.33390.
  • Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. DOI: 10.1093/molbev/msy096.
  • Ferreira, S. L. C.; Bruns, R. E.; Ferreira, H. S.; Matos, G. D.; David, J. M.; Brandão, G. C.; da Silva, E. G. P.; Portugal, L. A.; dos Reis, P. S.; Souza, A. S.; dos Santos, W. N. L. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta. 2007, 597, 179–186. DOI: 10.1016/j.aca.2007.07.011.
  • Kuan, I.-C.; Wei-Chen, K.; Chun-Ling, C.; Chi-Yang, Y. Microbial Biodiesel Production by Direct Transesterification of Rhodotorula Glutinis. Biomass. Energies. 2018, 11, 1036. DOI: 10.3390/en11051036.
  • Behera, A. R.; Dutta, K.; Verma, P.; Daverey, A.; Sahoo, K. D. High Lipid Accumulating Bacteria Isolated from Dairy Effluent Scum Grown on Dairy Wastewater as Potential Biodiesel Feedstock. J. Environ. Manage. 2019, 252, 109686. DOI: 10.1016/j.jenvman.2019.109686.
  • Cea, M.; Sangaletti-Gerhard, N.; Acuña, P.; Fuentes, I.; Jorquera, M.; Godoy, K.; Osses, F.; Navia, R. Screening Transesterifiable Lipid Accumulating Bacteria from Sewage Sludge for Biodiesel Production. Biotechnol. Rep. 2015, 8, 116–123. DOI: 10.1016/j.btre.2015.10.008.
  • Pawar, P. P.; Odaneth, A. A.; Vadgama, R. N.; Lali, A. M. Simultaneous Lipid Biosynthesis and Recovery for Oleaginous Yeast Yarrowia lipolytica. Biotechnol. Biofuels. 2019, 12, 237. DOI: 10.1186/s13068-019-1576-7.
  • Osman, M. E.; Abdel‑Razik, A. B.; Zaki, K. I.; Mamdouh, N.; El‑Sayed, H. Isolation, Molecular Identification of Lipid Producing Rhodotorula diobovata: Optimization of Lipid Accumulation for Biodiesel Production. J. Genet. Eng. Biotechnol. 2022, 20, 32. DOI: 10.1186/s43141-022-00304-9.
  • Röttig, A.; Atasayar, E.; Meier-Kolthoff, J. P.; Spröer, C.; Schumann, P.; Schauer, J.; Steinbüchel, A. Streptomyces jeddahensis sp. nov., an Oleaginous Bacterium Isolated from Desert Soil. Int. J. Syst. Evol. Microbiol. 2017, 67, 1676–1682. DOI: 10.1099/ijsem.0.001839.
  • Kot, A. M.; Gientka, I.; Bzducha-Wróbel, A.; Błażejak, S.; Kurcz, A. Comparison of Simple and Rapid Cell Wall Disruption Methods for Improving Lipid Extraction from Yeast Cells. J. Microbiol. Methods. 2020, 176, 105999. DOI: 10.1016/j.mimet.2020.105999.
  • Kosa, M.; Ragauskas, A. J. Lipids from Heterotrophic Microbes: Advances in Metabolism Research. Trends Biotechnol. 2011, 29, 53–61. DOI: 10.1016/j.tibtech.2010.11.002.
  • Khunthongpan, S.; Sumpavapol, P.; Tanasupawat, S.; Benjakul, S.; H-Kittikun, A. Providencia thailandensis sp. nov., Isolated from Seafood Processing Wastewater. J. Gen. Appl. Microbiol. 2013, 59, 185–190. DOI: 10.2323/jgam.59.185.
  • Gao, B.; Wang, F.; Huang, L.; Liu, H.; Zhong, Y.; Zhang, C. Biomass, Lipid Accumulation Kinetics, and the Transcriptome of Heterotrophic Oleaginous Microalga Tetradesmus bernardii under Different Carbon and Nitrogen Sources. Biotechnol. Biofuels. 2021, 14, 4. DOI: 10.1186/s13068-020-01868-9.
  • Shoaib, A.; Bhran, A.; Rasmey, A. H.; Mikky, Y. Optimization of Cultural Conditions for Lipid Accumulation by Aspergillus Wentii Ras101 and Its Transesterification to Biodiesel: Application of Response Surface Methodology. 3 Biotech. 2018, 8, 417. DOI: 10.1007/s13205-018-1434-5.
  • Muniraj, I. K.; Uthandi, S. K.; Hu, Z.; Xiao, L.; Zhan, L. Microbial Lipid Production from Renewable and Waste Materials for Second-Generation Biodiesel Feedstock. Environ. Technol. Rev. 2015, 4, 1–16. DOI: 10.1080/21622515.2015.1018340.
  • Wang, H.; Peng, X.; Zhang, H.; Yang, S.; Li, H. Microorganisms-Promoted Biodiesel Production from Biomass: A Review. Energy Convers. Manag. 2021, 12, 100137. DOI: 10.1016/j.ecmx.2021.100137.
  • Mohamed, H.; Awad, M. F.; Shah, A. M.; Sadaqat, B.; Nazir, Y.; Naz, T.; Yang, W.; Song, Y. Coculturing of Mucor plumbeus and Bacillus subtilis Bacterium as an Efficient Fermentation Strategy to Enhance Fungal Lipid and Gamma-Linolenic Acid (GLA) Production. Sci. Rep. 2022, 12, 13111. DOI: 10.1038/s41598-022-17442-2.
  • Perez-Garcia, O.; Escalante, F. M. E.; de-Bashan, L. E.; Bashan, Y. Heterotrophic Cultures of Microalgae: Metabolism and Potential Products. Water Res. 2011, 45, 11–36. DOI: 10.1016/j.watres.2010.08.037.
  • Gong, Z.; Shen, H.; Zhou, W.; Wang, Y.; Yang, X.; Zhao, Z. K. Efficient Conversion of Acetate into Lipids by the Oleaginous Yeast Cryptococcus Curvatus. Biotechnol. Biofuels. 2015, 8, 189. DOI: 10.1186/s13068-015-0371-3.
  • Smibert, R. M.; Kreig, N. R. Phenotypic Characterization. Methods for General and Molecular Bacteriology 1994, 607–654.
  • Liu, Z. J.; Liu, L. P.; Wen, P.; Li, N.; Zong, M. H.; Wu, H. Effects of Acetic Acid and pH on the Growth and Lipid Accumulation of the Oleaginous Yeast Trichosporon fermentans. BioResources. 2015, 10, 4152–4416. DOI: 10.15376/biores.10.3.4152-4166.
  • Salsabila, R.; Ilmi, R. Lipid Production from Zygosaccharomyces siamensis AP1 Using Sequencing Batch Method with Acetic Acid as Carbon Source. IOP Conf. Ser: Earth Environ. Sci. 2021, 743, 012096. DOI: 10.1088/1755-1315/743/1/012096.
  • Kundukad, B.; Schussman, M.; Yang, K.; Seviour, T.; Yang, L.; Rice, S.; Kjelleberg, S.; Doyle, P. Mechanistic Action of Weak Acid Drugs on Biofilms. Sci. Rep. 2017, 7, 4783. DOI: 10.1038/s41598-017-05178-3.
  • Huang, X. F.; Liu, J. N.; Lu, L. J.; Peng, K. M.; Yang, G. X.; Liu, J. Culture Strategies for Lipid Production Using Acetic Acid as Sole Carbon Source by Rhodosporidium toruloides. Bioresour. Technol. 2016, 206, 141–149. DOI: 10.1016/j.biortech.2016.01.073.
  • Chiu, S.-Y.; Kao, C.-Y.; Chen, T.-Y.; Chang, Y.-B.; Kuo, C.-M.; Lin, C.-S. Cultivation of Microalgal Chlorella for Biomass and Lipid Production Using Wastewater as Nutrient Resource. Bioresour. Technol. 2015, 184, 179–189. DOI: 10.1016/j.biortech.2014.11.080.
  • Mohammed, D.; Zaher, F.; Hassan, E.; Maksoud, H.; Ramadan, E. Factors Affecting Microbial Oil Accumulation by Oleaginous Yeast. ARRB. 2018, 23, 1–12. DOI: 10.9734/ARRB/2018/38425.
  • Matsakas, L.; Giannakou, M.; Vörös, D. Effect of Synthetic and Natural Media on Lipid Production from Fusarium oxysporum. Electron. J. Biotechnol. 2017, 30, 95–102. DOI: 10.1016/j.ejbt.2017.10.003.
  • Wu, L. F.; Chen, P. C.; Lee, C. M. The Effects of Nitrogen Sources and Temperature on Cell Growth and Lipid Accumulation of Microalgae. Int. Biodeterior. Biodegrad. 2013, 85, 506–510. DOI: 10.1016/j.ibiod.2013.05.016.
  • Saiyad, S. A.; Jhala, Y. K.; Vyas, R. V. Comparative Efficiency of Five Potash and Phosphate Solubilizing Bacteria and Their Key Enzymes Useful for Enhancing and Improvement of Soil Fertility. Int. J. Sci. Res. Publ. 2015, 5, 1–6.
  • Wei, Z.; Zeng, G. M.; Kosa, M.; Huang, D. L.; Ragauskas, A. J. Pyrolysis Oil-Based Lipid Production as Biodiesel Feedstock by Rhodococcus opacus. Appl. Biochem. Biotechnol. 2014, 175, 1234–1246. DOI: 10.1007/s12010-014-1305-4.
  • Kumar, D.; Singh, B.; Korstad, J. Utilization of Lignocellulosic Biomass by Oleaginous Yeast and Bacteria for Production of Biodiesel and Renewable Diesel. Renew. Sust. Energ. Rev. 2017, 73, 654–671. DOI: 10.1016/j.rser.2017.01.022.
  • Bajwa, K.; Bishnoi, N. R.; Kirrolia, A.; Sharma, J.; Gupta, S. Influence of Temperature, pH Variation and Incubation Period on Single Celled Micro-Organism. European J. Biotechnol. Biosci. 2017, 5, 22–26.
  • Whitman, W. B.; Fred, R.; Peter, K.; Martha, T.; Jonsik, C.; Paul, D.; Brian, H.; Svetlana, D. Providencia. Bergey’s Manual of Systematics of Archaea and Bacteria 2017, 1–26. DOI: 10.1002/9781118960608.gbm01163.
  • Li, K. Q.; Li, M.; He, Y. F.; Gu, X. Y.; Pang, K.; Ma, Y.; Lu, D. Effects of pH and Nitrogen Form on Nitzschia closterium Growth by Linking Dynamic with Enzyme Activity. Chemosphere. 2020, 249, 126154. DOI: 10.1016/j.chemosphere.2020.126154.
  • Patnaik, S.; Saravanabhupathy, S.; Singh, S.; Daverey, A.; Dutta, K. Multi-Objective Optimization for Biomass and Lipid Production by Oleaginous Bacteria Using Vegetable Waste as Feedstock. Environ. Eng. Res. 2022, 27, 210061–210060. DOI: 10.4491/eer.2021.061.
  • Gao, R.; Li, Z.; Zhou, X.; Cheng, S.; Zheng, L. Oleaginous Yeast Yarrowia lipolytica Culture with Synthetic and Food Waste-Derived Volatile Fatty Acids for Lipid Production. Biotechnol. Biofuels. 2017, 10, 247. DOI: 10.1186/s13068-017-0942-6.
  • Sara, M.; Brar, S. K.; Blais, J. F. Lipid Production by Yarrowia lipolytica Grown on Biodiesel-Derived Crude Glycerol: Optimization of Growth Parameters and Their Effects on the Fermentation Efficiency. RSC Adv. 2016, 6, 90547–90558. DOI: 10.1039/C6RA16382C.
  • Liu, J. Z.; Weng, L. P.; Zhang, Q. L.; Xu, H.; Ji, L. N. Optimization of Glucose Oxidase Production by Aspergillus Niger in a Benchtop Bioreactor Using Response Surface Methodology. World J. Microbiol. Biotechnol. 2003, 19, 317–323. DOI: 10.1023/A:1023622925933.
  • Kosa, G.; Kohler, A.; Tafintseva, V.; Zimmermann, B.; Forfang, K.; Afseth, N. K.; Tzimorotas, D.; Vuoristo, K. S.; Horn, S. J.; Mounier, J.; Shapaval, V. Microtiter Plate Cultivation of Oleaginous Fungi and Monitoring of Lipogenesis by High-Throughput FTIR Spectroscopy. Microb. Cell Fact. 2017, 16, 101. DOI: 10.1186/s12934-017-0716-7.
  • Coates, J. Interpretation of Infrared Spectra, a Practical Approach. Encyclop. Analy. Chem. 2000, 12, 10815–10837.
  • Kosa, G.; Zimmermann, B.; Kohler, A.; Ekeberg, D.; Afseth, N. K.; Mounier, J.; Shapaval, V. High-Throughput Screening of Mucoromycota Fungi for Production of Low- and High-Value Lipids. Biotechnol. Biofuels. 2018, 11, 66. DOI: 10.1186/s13068-018-1070-7.
  • Bagul, S. Y.; Bharti, R. K.; Dhar, D. W. Assessing Biodiesel Quality Parameters for Wastewater Grown Chlorella sp. Water Sci. Technol. 2017, 76, 719–727. DOI: 10.2166/wst.2017.223.
  • Beetul, K.; Sadally, S. B.; Taleb-Hossenkhan, N.; Bhagooli, R.; Puchooa, D. An Investigation of Biodiesel Production from Microalgae Found in Mauritian Waters. Biofuel Res. J. 2014, 2, 58–64. DOI: 10.18331/BRJ2015.1.2.5.
  • Ali, B. A.; Indabawa, I. I.; Yaro, C. A.; Opisa, A. N. Production and Characterization of Biodiesel from the Microalga, Chlorella Vulgaris (Beijerinck 1890). Trends App. Sci. Res. 2019, 14, 90–97.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.