36
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Resin screening and process optimization for erythritol mother liquor chromatographic separation

, , , , , , & show all

References

  • Bernt, W. O.; Borzelleca, J. F.; Flamm, G.; Munro, I. C. Erythritol: A Review of Biological and Toxicological Studies. Regul. Toxicol. Pharmacol. 1996, 24, S191–S197. DOI: 10.1006/rtph.1996.0098.
  • Awuchi, C. G.; Echeta, K. C. Current Developments in Sugar Alcohols: Chemistry, Nutrition, and Health Concerns of Sorbitol, Xylitol, Glycerol, Arabitol, Inositol, Maltitol, and Lactitol. Int. J. Adv. Acad. Res. 2019, 5, 1–33.
  • Bordier, V.; Teysseire, F.; Schlotterbeck, G.; Senner, F.; Beglinger, C.; Meyer-Gerspach, A. C.; Wölnerhanssen, B. K. Effect of a Chronic Intake of the Natural Sweeteners Xylitol and Erythritol on Glucose Absorption in Humans with Obesity. Nutrients 2021, 13, 3950. DOI: 10.3390/nu13113950.
  • Additives, E.; Food, N. Scientific Opinion on the Safety of the Proposed Extension of Use of Erythritol (E 968) as a Food Additive. EFSA J. 2015, 13, 4033.
  • Kaulpiboon, J.; Haewpetch, P.; Rudeekulthamrong, P. Biosynthesis, Structural Characteristics and Anticariogenic Properties of Erythritol-Based Acceptor Products. J. Funct. Foods 2024, 112, 105934. DOI: 10.1016/j.jff.2023.105934.
  • Nakagawa, Y.; Kasumi, T.; Ogihara, J.; Tamura, M.; Arai, T.; Tomishige, K. Erythritol: Another C4 Platform Chemical in Biomass Refinery. ACS Omega 2020, 5, 2520–2530. DOI: 10.1021/acsomega.9b04046.
  • Rzechonek, D. A.; Dobrowolski, A.; Rymowicz, W.; Mirończuk, A. M. Recent Advances in Biological Production of Erythritol. Crit. Rev. Biotechnol. 2018, 38, 620–633. DOI: 10.1080/07388551.2017.1380598.
  • Zhang, L.; Zhao, X.; Zhang, J.; Yang, L.; Liu, J. The Recovery of Erythritol from the Waste Mother Liquor. Food and Fermentation Industries 2013, 39, 27–31.
  • Zhao, X. A Method of Reusing Mother Liquor of Erythritol Production to Prepare Mixed Sugar Alcohol Products, CN104086365B, 05-18, 2016.
  • Wang, Z.; Liu, W.; Duan, X.; Ren, G.; Li, L.; Cao, W.; Guo, J.; Jiao, X.; Zhu, L.; Wei, X. Effects of Freezing and Drying Programs on IgY Aggregation and Activity during Microwave Freeze-Drying: Protective Effects and Interactions of Trehalose and Mannitol. Int. J. Biol. Macromol. 2024, 260, 129448. DOI: 10.1016/j.ijbiomac.2024.129448.
  • Zhao, X.-Y.; Zhang, L.-H.; Yang, L.-P.; Han, Y.-L.; Tian, Y.-J.; Zhang, J.-X.; Liu, J.-J. Identification of the Components in the Erythritol Mother Liquor. Food and Fermentation Industries 2014, 40, 200–204.
  • Wang, S. Q.; Wang, H. W.; Lv, J. Y.; Deng, Z. X.; Cheng, H. R. Highly Efficient Erythritol Recovery from Waste Erythritol Mother Liquor by a Yeast-Mediated Biorefinery Process. J. Agric. Food Chem. 2017, 65, 11020–11028. DOI: 10.1021/acs.jafc.7b04112.
  • Broughton, D. B. Production-Scale Adsorptive Separations of Liquid Mixtures by Simulated Moving-Bed Technology. Sep. Sci. Technol. 1984, 19, 723–736. DOI: 10.1080/01496398408068590.
  • Barker, P. E.; Abusabah, E. K. E. The Separation of Synthetic Mixtures of Glucose and Fructose and Also Inverted Sucrose Feedstocks Using Countercurrent Chromatographic Techniques. Chromatographia 1985, 20, 9–12. DOI: 10.1007/BF02260479.
  • Subramani, H. J.; Hidajat, K.; Ray, A. K. Optimization of Simulated Moving Bed and Varicol Processes for Glucose–Fructose Separation. Chem. Eng. Res. Des. 2003, 81, 549–567. DOI: 10.1205/026387603765444500.
  • Wagner, N.; Håkansson, E.; Wahler, S.; Panke, S.; Bechtold, M. Multi-Objective Optimization for the Economic Production of D-Psicose Using Simulated Moving Bed Chromatography. J. Chromatogr. A 2015, 1398, 47–56. DOI: 10.1016/j.chroma.2015.04.008.
  • Long, N. V. D.; Le, T. H.; Kim, J. L.; Lee, J. W.; Koo, Y. M. Separation of D-Psicose and D-Fructose Using Simulated Moving Bed Chromatography. J. Sep. Sci. 2009, 32, 1987–1995. DOI: 10.1002/jssc.200800753.
  • Gillarová, S.; Henke, S.; Svoboda, T.; Krčová, P.; Bubník, Z.; Kadlec, P.; Sluková, M. Possibilities of Optimizing the Purity of Mannose in Continuous Chromatographic Separation. Chem. Eng. Technol. 2023, 46, 1298–1306. DOI: 10.1002/ceat.202200534.
  • Li, J. C.; Ban, X. F.; Gu, Z. B.; Li, C. M.; Hong, Y.; Cheng, L.; Li, Z. F. Preparation and Antibacterial Activity of a Novel Maltotetraose Product. Process Biochem. 2021, 108, 8–17. DOI: 10.1016/j.procbio.2021.05.018.
  • Yao, C. Y.; Zheng, Z. W.; Chen, K.; Wei, L. W.; Shen, L.; Lu, Y. H.; Fan, E. G. Using a Machine Learning Model for the Optimal Design of Simulated Moving Bed Processes and Its Application to Separate Rebaudioside a and Stevioside. J. Chem. Technol. Biotechnol. 2021, 96, 2558–2568. DOI: 10.1002/jctb.6798.
  • Lee, J. W.; Kim, J. I.; Lee, C. H.; Kim, J. K.; Koo, Y. M. Design and Sensitivity Analysis of Simulated Moving Bed Chromatography to Separate Sugar Alcohols. J. Liq. Chromatogr. Relat. Technol. 2007, 30, 1859–1877. DOI: 10.1080/10826070701386413.
  • Ueki, Y.; Umemura, T.; Iwashita, Y.; Odake, T.; Haraguchi, H.; Tsunoda, K. Preparation of Low Flow-Resistant Methacrylate-Based Monolithic Stationary Phases of Different Hydrophobicity and the Application to Rapid Reversed-Phase Liquid Chromatographic Separation of Alkylbenzenes at High Flow Rate and Elevated Temperature. J. Chromatogr. A 2006, 1106, 106–111. DOI: 10.1016/j.chroma.2005.08.041.
  • Blanc, C.-L.; Theoleyre, M.-A.; Lutin, F.; Pareau, D.; Stambouli, M. Purification of Organic Acids by Chromatography: Adsorption Isotherms and Impact of Elution Flow Rate. Sep. Purif. Technol. 2015, 141, 105–112. DOI: 10.1016/j.seppur.2014.11.032.
  • Guiochon, G.; Farkas, T.; Guan-Sajonz, H.; Koh, J.-H.; Sarker, M.; Stanley, B. J.; Yun, T. Consolidation of Particle Beds and Packing of Chromatographic Columns. J. Chromatogr. A 1997, 762, 83–88. DOI: 10.1016/s0021-9673(96)00642-5.
  • Pedruzzi, I.; Malvessi, E.; Mata, V. G.; Silva, E. A. B.; Silveira, M. M.; Rodrigues, A. E. Quantification of Lactobionic Acid and Sorbitol from Enzymatic Reaction of Fructose and Lactose by High-Performance Liquid Chromatography. J. Chromatogr. A 2007, 1145, 128–132. DOI: 10.1016/j.chroma.2007.01.051.
  • He, X.; Zhang, M.; Wei, F.; Wang, S. Affinity Character Analysis of Magnolol and Honokiol Based on Stepwise Frontal Analysis Coupled with Cell Membrane Chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2023, 1229, 123903. DOI: 10.1016/j.jchromb.2023.123903.
  • Jacobson, J.; Frenz, J.; Horváth, C. Measurement of Adsorption Isotherms by Liquid Chromatography. J. Chromatogr. A 1984, 316, 53–68. DOI: 10.1016/s0021-9673(00)96140-5.
  • Zhao, L.; Che, X.; Huang, Y.; Zhu, K.; Du, Y.; Gao, J.; Zhang, R.; Zhang, Y.; Ma, G. Regulation on Both Pore Structure and Pressure-Resistant Property of Uniform Agarose Microspheres for High-Resolution Chromatography. J. Chromatogr. A 2022, 1681, 463461. DOI: 10.1016/j.chroma.2022.463461.
  • Anoyal, S. J. Complexing of Polyols with Cations. Tetrahedron 1974, 30, 1695–1702. DOI: 10.1016/S0040-4020(01)90691-X.
  • Angyal, S. J. Complexes of Metal Cations with Carbohydrates in Solution. Advances in Carbohydrate Chemistry and Biochemistry, 1989, 47, 1–43. DOI: 10.1016/S0065-2318(08)60411-4.
  • Vente, J. A.; Bosch, H.; de Haan, A. B.; Bussmann, P. J. T. Evaluation of Sugar Sorption Isotherm Measurement by Frontal Analysis under Industrial Processing Conditions. J. Chromatogr. A 2005, 1066, 71–79. DOI: 10.1016/j.chroma.2004.12.071.
  • Ruthven, D. M.; Ching, C. Counter-Current and Simulated Counter-Current Adsorption Separation Processes. Chem. Eng. Sci. 1989, 44, 1011–1038. DOI: 10.1016/0009-2509(89)87002-2.
  • Nazario, C. E.; Silva, M. R.; Franco, M. S.; Lanças, F. Evolution in Miniaturized Column Liquid Chromatography Instrumentation and Applications: An Overview. J. Chromatogr. A 2015, 1421, 18–37. DOI: 10.1016/j.chroma.2015.08.051.
  • Nizam, T.; Krishnan, K. A.; Joseph, A.; Krishnan, R. R. Isotherm, Kinetic and Thermodynamic Modelling of Liquid Phase Adsorption of the Heavy Metal Ions Zn(II), Pb(II) and Cr(VI) onto MgFe2O4 Nanoparticles. Groundwater Sustainable Dev. 2024, 25, 101120. DOI: 10.1016/j.gsd.2024.101120.
  • Seidel-Morgenstern, A. Experimental Determination of Single Solute and Competitive Adsorption Isotherms. J. Chromatogr. A 2004, 1037, 255–272. DOI: 10.1016/j.chroma.2003.11.108.
  • Gritti, F.; Guiochon, G. Systematic Errors in the Measurement of Adsorption Isotherms by Frontal Analysis: Impact of the Choice of Column Hold-up Volume, Range and Density of the Data Points. J. Chromatogr. A 2005, 1097, 98–115. DOI: 10.1016/j.chroma.2005.08.029.
  • Muther, T.; Kalantari Dahaghi, A. Calculation of Hydrogen Adsorption Isotherms and Henry Coefficients with Mixed CO2 and CH4 Gases on Hydroxylated Quartz Surface: Implications to Hydrogen Geo-Storage. J. Storage. Mater. 2024, 87, 111425. DOI: 10.1016/j.est.2024.111425.
  • Cavazzini, A.; Felinger, A.; Guiochon, G. Comparison between Adsorption Isotherm Determination Techniques and Overloaded Band Profiles on Four Batches of Monolithic Columns. J. Chromatogr. A 2003, 1012, 139–149. DOI: 10.1016/s0021-9673(03)01185-3.
  • Scott, R. P. W. The Role of Molecular Interactions in Chromatography. J. Chromatogr. A 1976, 122, 35–53. DOI: 10.1016/S0021-9673(00)82235-9.
  • Su, L., Chromatographic Analysis; Tsinghua University Press: Beijing China, 2017.
  • Rongère, P.; Morel-Desrosiers, N.; Morel, J.-P. Interactions between Cations and Sugars. Part 8. Gibbs Energies, Enthalpies and Entropies of Association of Divalent and Trivalent Metal Cations with Xylitol and Glucitol in Water at 298.15 K. J. Chem. Soc. Faraday Trans. 1995, 91, 2771–2777. DOI: 10.1039/FT9959102771.
  • Verstraeten, M.; Pursch, M.; Eckerle, P.; Luong, J.; Desmet, G. Modelling the Thermal Behaviour of the Low-Thermal Mass Liquid Chromatography System. J. Chromatogr. A 2011, 1218, 2252–2263. DOI: 10.1016/j.chroma.2011.02.023.
  • Nishikawa, T.; Suzuki, S.; Kubo, H.; Ohtani, H. On-Column Isomerization of Sugars during High-Performance Liquid Chromatography: Analysis of the Elution Profile. J. Chromatogr. A 1996, 720, 167–172. DOI: 10.1016/0021-9673(95)00280-4.
  • Ortner, F.; Wiemeyer, H.; Mazzotti, M. Interconversion and Chromatographic Separation of Carbohydrate Stereoisomers on Polystyrene-Divinylbenzene Resins. J. Chromatogr. A 2017, 1517, 54–65. DOI: 10.1016/j.chroma.2017.08.013.
  • Brown, P. R. Effect of Flow Rates and the Slope of the Linear Concentration Gradient on Peak Areas in High Pressure Liquid Chromatography. J. Chromatogr. 1971, 57, 383–390. DOI: 10.1016/0021-9673(71)80058-4.
  • Gerlich, S.; Arab, H.; Buchholz, M.; Engell, S. Experimental Application of Individual Column State and Parameter Estimation in SMB Processes to an Amino Acid Separation. IFAC-PapersOnLine 2021, 54, 348–353. DOI: 10.1016/j.ifacol.2021.08.266.
  • Hao, W.; Wang, J. Evaluation of Nonlinear Chromatographic Performance by Frontal Analysis Using a Simple Multi-Plate Mathematical Model. J. Chromatogr. A 2005, 1063, 47–56. DOI: 10.1016/j.chroma.2004.11.065.
  • Lin, B.; Golshan-Shirazi, S.; Guiochon, G. Effect of Mass Transfer Coefficient on the Elution Profile in Nonlinear Chromatography. J. Phys. Chem. 1989, 93, 3363–3368. DOI: 10.1021/j100345a095.
  • Migliorini, C.; Gentilini, A.; Mazzotti, M.; Morbidelli, M. Design of Simulated Moving Bed Units under Nonideal Conditions. Ind. Eng. Chem. Res. 1999, 38, 2400–2410. DOI: 10.1021/ie980262y.
  • Xu, J.; Jiang, X.; Guo, J.; Chen, Y.; Yu, W. Competitive Adsorption Equilibrium Model with Continuous Temperature Dependent Parameters for Naringenin Enantiomers on Chiralpak AD Column. J. Chromatogr. A 2015, 1422, 163–169. DOI: 10.1016/j.chroma.2015.10.018.
  • Xu, J.; Zhu, L.; Xu, G.; Yu, W.; Ray, A. K. Determination of Competitive Adsorption Isotherm of Enantiomers on Preparative Chromatographic Columns Using Inverse Method. J. Chromatogr. A 2013, 1273, 49–56. DOI: 10.1016/j.chroma.2012.11.052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.