95
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring traditional and modern approaches for extracting bioactive compounds from Ferulago trachycarpa

, , , , , , , , & show all

References

  • Kumar, A.; P, N.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; K, S.; Oz, F. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. DOI: 10.3390/molecules28020887.
  • Sharma, V.; Gupta, P.; Sharma, P. Recent Advancements in Novel Bioactive Peptides and Protein Hydrolysates Isolated from Different Medicinal Plants along with Their Applications in Food and Pharmaceutical Industries. Int. J. Pept. Res. Ther. 2023, 29, 93. DOI: 10.1007/s10989-023-10565-8.
  • Singh, M. R.; Singh, D. 2023. Phytopharmaceuticals and Herbal Drugs: Prospects and Safety Issues in the Delivery of Natural Products. San Diego, United States: Academic Press.
  • Pešić, M. B.; Milinčić, D. D.; Kostić, A. Ž.; Stanisavljević, N. S.; Vukotić, G. N.; Kojić, M. O.; Gašić, U. M.; Barać, M. B.; Stanojević, S. P.; Popović, D. A.; et al. In Vitro Digestion of Meat-and Cereal-Based Food Matrix Enriched with Grape Extracts: How Are Polyphenol Composition, Bioaccessibility and Antioxidant Activity Affected? Food Chem. 2019, 284, 28–44. DOI: 10.1016/j.foodchem.2019.01.107.
  • Süzgeç-Selçuk, S.; Dikpınar, T. Phytochemical Evaluation of the Ferulago Genus and the Pharmacological Activities of Its Coumarin Constituents. J. Herbal Med. 2021, 25, 100415. DOI: 10.1016/j.hermed.2020.100415.
  • Akalin, E.; Koçyiğit, M. A Chemotaxonomic Study on Ferulago Species in Turkey. J. Fac. Pharm. Istanbul Univ. 2010, 41, 33–41.
  • Hosseini, N.; Salehi Arjmand, H.; Ghorbanpour, M.; Azhdehark, V. Chemical Analysis of Essential Oils from Different Populations of Ferulago angulata Subsp. Carduchorum in Iran. J. Med. Plants and by-Prod. 2013, 2, 69–74.
  • Badalamenti, N.; Ilardi, V.; Rosselli, S.; Bruno, M. The Ethnobotany, Phytochemistry and Biological Properties of Genus Ferulago–a Review. J. Ethnopharmacol. 2021, 274, 114050. DOI: 10.1016/j.jep.2021.114050.
  • Karakaya, S.; Özbek, H.; Gözcü, S.; Güvenalp, Z.; Yuca, H.; Duman, H.; Kazaz, C.; Kiliç, C. S. α-Amylase and α-Glucosidase Inhibitory Activities of the Extracts and Constituents of Ferulago blancheana, F. pachyloba and  F. trachycarpa Roots. Bangladesh J. Pharmacol. 2018, 13, 35–40. DOI: 10.3329/bjp.v13i1.33668.
  • Karakaya, S.; Simsek, D.; Göger, G.; Demirci, B.; Duman, H.; Altanlar, N.; Kiliç, C. S. Comparison of Essential Oils of Ferulago Pachyloba (Fenzl) Boiss., F. trachycarpa Boiss. and F. bracteata Boiss. & Hausskn. Species (Apiaceae) Growing in Turkey and Determination of Their Antimicrobial Activities. J. Essent. Oil Bear. Plants 2019, 22, 200–213. DOI: 10.1080/0972060X.2019.1599733.
  • Baser, K.; Koyuncu, M.; Vural, M. Composition of the Essential Oil of Ferulago Trachycarpa (Fenzl) Boiss. J. Essent. Oil Res. 1998, 10, 665–666. DOI: 10.1080/10412905.1998.9701003.
  • Erdemoglu, N.; Akalin, E.; Akgöç, M.; Cikrikci, S.; Bilsel, G. Comparison of the Seed Oils of Ferulago Trachycarpa Boiss. different Localities with Respect to Fatty Acids. Rec. Nat. Prod. 2008, 2, 13.
  • Belwal, T.; Ezzat, S. M.; Rastrelli, L.; Bhatt, I. D.; Daglia, M.; Baldi, A.; Devkota, H. P.; Orhan, I. E.; Patra, J. K.; Das, G. A Critical Analysis of Extraction Techniques Used for Botanicals: Trends, Priorities, Industrial Uses and Optimization Strategies. TrAC, Trends Anal. Chem. 2018, 100, 82–102. DOI: 10.1016/j.trac.2017.12.018.
  • Cvetanović, A.; Yan, L. 2021. A Closer Look on Polyphenols Isolation by Subcritical Water Extraction as First Choice Green Technique for Their Extraction from Medicinal Plants. In A Closer Look at Polyphenolics; P. Bertollini, Ed.; Nova Science Publisher, New York, NY, pp. 100–120.
  • Hladnik, L.; Vicente, F. A.; Košir, A.; Grilc, M.; Likozar, B. Stirred, Ultrasound-Assisted and Microwave-Assisted Extraction Process of β-Carotene from Rhodotorula Glutinis in Biorefinery Downstream. Sep. Purif. Technol. 2023, 311, 123293. DOI: 10.1016/j.seppur.2023.123293.
  • Waliat, S.; Arshad, M. S.; Hanif, H.; Ejaz, A.; Khalid, W.; Kauser, S.; Al-Farga, A. A Review on Bioactive Compounds in Sprouts: Extraction Techniques, Food Application and Health Functionality. Int. J. Food Prop. 2023, 26, 647–665. DOI: 10.1080/10942912.2023.2176001.
  • Cvetanović, A.; Zengin, G.; Zeković, Z.; Švarc-Gajić, J.; Ražić, S.; Damjanović, A.; Mašković, P.; Mitić, M. Comparative in Vitro Studies of the Biological Potential and Chemical Composition of Stems, Leaves and Berries Aronia Melanocarpa’s Extracts Obtained by Subcritical Water Extraction. Food Chem. Toxicol. 2018, 121, 458–466. DOI: 10.1016/j.fct.2018.09.045.
  • Chuo, S. C.; Nasir, H. M.; Mohd-Setapar, S. H.; Mohamed, S. F.; Ahmad, A.; Wani, W. A.; Muddassir, M.; Alarifi, A. A Glimpse into the Extraction Methods of Active Compounds from Plants. Crit. Rev. Anal. Chem. 2022, 52, 667–696. DOI: 10.1080/10408347.2020.1820851.
  • Mašković, P.; Veličković, V.; Mitić, M.; Đurović, S.; Zeković, Z.; Radojković, M.; Cvetanović, A.; Švarc-Gajić, J.; Vujić, J. Summer Savory Extracts Prepared by Novel Extraction Methods Resulted in Enhanced Biological Activity. Ind. Crops Prod. 2017, 109, 875–881. DOI: 10.1016/j.indcrop.2017.09.063.
  • Cvetanović Kljakić, A.; Stupar, A.; Terzić, M.; Božunović, J.; Gašić, U.; Zengin, G.; Yildiztugay, E. Chemical Profiling and Biological Activities of Opopanax Hispidus Extracts: A Comparative Insight on Conventional and Green Extraction Technologies. Sustainable Chem. Pharm. 2023, 33, 101122. DOI: 10.1016/j.scp.2023.101122.
  • Pekić, B.; Zeković, Z.; Petrović, L.; Tolić, A. Behavior of (-)-α-Bisabolol and (-)-α-Bisabololoxides a and B in Camomile Flower Extraction with Supercritical Carbon Dioxide. Sep. Sci. Technol. 1995, 30, 3567–3576. DOI: 10.1080/01496399508015137.
  • Cvetanović Kljakić, A.; Radosavljević, M.; Zengin, G.; Yan, L.; Gašić, U.; Kojić, P.; Torbica, A.; Belović, M.; Zeković, Z. New Biological and Chemical Insights into Optimization of Chamomile Extracts by Using Artificial Neural Network (ANN) Model. Plants 2023, 12, 1211. DOI: 10.3390/plants12061211.
  • Kähkönen, M. P.; Hopia, A. I.; Vuorela, H. J.; Rauha, J. P.; Pihlaja, K.; Kujala, T. S.; Heinonen, M. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. DOI: 10.1021/jf990146l.
  • Markham, K. R. 1989. Flavones, Flavonoids, and Their Glycosides. In Methods in Plant Biochemistry; J. B. Harborne, P. M. Dey, Eds. Academic Press Ltd., London, pp. 197–235.
  • Nedić, N.; Nešović, M.; Radišić, P.; Gašić, U.; Baošić, R.; Joksimović, K.; Pezo, L.; Tešić, Ž.; Vovk, I. Polyphenolic and Chemical Profiles of Honey from the Tara Mountain in Serbia. Front. Nutr. 2022, 9, 941463. DOI: 10.3389/fnut.2022.941463.
  • Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. DOI: 10.1016/S0023-6438(95)80008-5.
  • Erel, O. A Novel Automated Direct Measurement Method for Total Antioxidant Capacity Using a New Generation, More Stable ABTS Radical Cation. Clin. Biochem. 2004, 37, 277–285. DOI: 10.1016/j.clinbiochem.2003.11.015.
  • Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S. E. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004, 52, 7970–7981., DOI: 10.1021/jf048741x.
  • Benzie, I. F.; Strain, J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. DOI: 10.1006/abio.1996.0292.
  • Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. DOI: 10.1006/abio.1999.4019.
  • Zhao, H.; Fan, W.; Dong, J.; Lu, J.; Chen, J.; Shan, L.; Lin, Y.; Kong, W. Evaluation of Antioxidant Activities and Total Phenolic Contents of Typical Malting Barley Varieties. Food Chem. 2008, 107, 296–304. DOI: 10.1016/j.foodchem.2007.08.018.
  • Zengin, G.; Sarikurkcu, C.; Aktumsek, A.; Ceylan, R.; Ceylan, O. A Comprehensive Study on Phytochemical Characterization of Haplophyllum myrtifolium Boiss. Endemic to Turkey and Its Inhibitory Potential against Key Enzymes Involved in Alzheimer, Skin Diseases and Type II Diabetes. Ind. Crops Prod. 2014, 53, 244–251. DOI: 10.1016/j.indcrop.2013.12.043.
  • Orhan, I. E.; Senol, F. S.; Gulpinar, A. R.; Sekeroglu, N.; Kartal, M.; Sener, B. Neuroprotective Potential of Some Terebinth Coffee Brands and the Unprocessed Fruits of Pistacia Terebinthus L. and Their Fatty and Essential Oil Analyses. Food Chem. 2012, 130, 882–888. DOI: 10.1016/j.foodchem.2011.07.119.
  • Azarbani, F.; Saki, Z.; Zareei, A.; Mohammadi, A. Phenolic Contents, Antibacterial and Antioxidant Activities of Flower, Leaf and Stem Extracts of Ferulago angulata (Schlecht) Boiss. Int J Pharm Pharm Sci 2014, 6, 123–125.
  • Kiziltas, H.; Ekin, S.; Bayramoglu, M.; Akbas, E.; Oto, G.; Yildirim, S.; Ozgokce, F. Antioxidant Properties of Ferulago Angulata and Its Hepatoprotective Effect against N-Nitrosodimethylamine-Induced Oxidative Stress in Rats. Pharm. Biol. 2017, 55, 888–897. DOI: 10.1080/13880209.2016.1270974.
  • Dikpınar, T.; Süzgeç-Selçuk, S.; Çelik, B. Ö.; Uruşak, E. A. Antimicrobial Activity of rhizomes of Ferulago Trachycarpa Boiss and Bioguided Isolation of Active Coumarin Constituents. Industrial Cropsand Products  2018, 123, 762–767. DOI: 10.1016/j.indcrop.2018.06.072.
  • Selçuk, S. S.; Özsoy, N.; Çelik, B. Ö.; Uruşak, E. A. Antioxidant and Antimicrobial Activity of Ferulago Trojana E. Akalın & Pimenov. İstanbul J. Pharm. 2017, 47, 101–106.
  • Zengin, G.; Cvetanović, A.; Gašić, U.; Stupar, A.; Bulut, G.; Senkardes, I.; Dogan, A.; Seebaluck-Sandoram, R.; Rengasamy, K. R. R.; Ibrahime Sinan, K.; Fawzi Mahomoodally, M. Chemical Composition and Bio-Functional Perspectives of Erica arborea L. extracts Obtained by Different Extraction Techniques: Innovative Insights. Ind. Crops Prod. 2019, 142, 111843. DOI: 10.1016/j.indcrop.2019.111843.
  • Cvetanović, A.; Švarc-Gajić, J.; Mašković, P.; Savić, S.; Nikolić, L. J. Antioxidant and Biological Activity of Chamomile Extracts Obtained by Different Techniques: Perspective of Using Superheated Water for Isolation of Biologically Active Compounds. Ind. Crops Prod. 2015, 65, 582–591. DOI: 10.1016/j.indcrop.2014.09.044.
  • Zengin, G.; Cvetanović, A.; Gašić, U.; Tešić, Ž.; Stupar, A.; Bulut, G.; Ibrahime Sinan, K.; Uysal, S.; Picot-Allain, M. C. N.; Fawzi Mahomoodally, M. A Comparative Exploration of the Phytochemical Profiles and Bio-Pharmaceutical Potential of Helichrysum stoechas Subsp. barrelieri Extracts Obtained via Five Extraction Techniques. Process Biochem. 2020, 91, 113–125. DOI: 10.1016/j.procbio.2019.12.002.
  • Karakaya, S.; Koca, M.; Sytar, O.; Dursunoglu, B.; Ozbek, H.; Duman, H.; Guvenalp, Z.; Kılıc, C. Antioxidant and Anticholinesterase Potential of Ferulago Cassia with Farther Bio-Guided Isolation of Active Coumarin Constituents. S Afr. J. Bot. 2019, 121, 536–542. DOI: 10.1016/j.sajb.2019.01.020.
  • Alcázar Magaña, A.; Kamimura, N.; Soumyanath, A.; Stevens, J. F.; Maier, C. S. Caffeoylquinic Acids: Chemistry, Biosynthesis, Occurrence, Analytical Challenges, and Bioactivity. Plant J. 2021, 107, 1299–1319., DOI: 10.1111/tpj.15390.
  • Brandes, M. S.; Gray, N. E. NRF2 as a Therapeutic Target in Neurodegenerative Diseases. ASN Neuro. 2020, 12, 1759091419899782. DOI: 10.1177/1759091419899782.
  • Liang, N.; Dupuis, J. H.; Yada, R. Y.; Kitts, D. D. Chlorogenic Acid Isomers Directly Interact with Keap 1-Nrf2 Signaling in Caco-2 Cells. Mol. Cell. Biochem. 2019, 457, 105–118. DOI: 10.1007/s11010-019-03516-9.
  • Gray, N. E.; Alcazar Magana, A.; Lak, P.; Wright, K. M.; Quinn, J.; Stevens, J. F.; Maier, C. S.; Soumyanath, A. Centella Asiatica: Phytochemistry and Mechanisms of Neuroprotection and Cognitive Enhancement. Phytochem. Rev. 2018, 17, 161–194. DOI: 10.1007/s11101-017-9528-y.
  • Pinheiro Fernandes, F. D.; Fontenele Menezes, A. P.; de Sousa Neves, J. C.; Fonteles, A. A.; da Silva, A. T. A.; de Araújo Rodrigues, P.; Santos do Carmo, M. R.; de Souza, C. M.; de Andrade, G. M. Caffeic Acid Protects Mice from Memory Deficits Induced by Focal Cerebral Ischemia. Behav. Pharmacol. 2014, 25, 637–647. DOI: 10.1097/FBP.0000000000000076.
  • Luo, L.; Shang, P.; Li, D. Luteolin: A Flavonoid That Has Multiple Cardio-Protective Effects and Its Molecular Mechanisms. Front. Pharmacol. 2017, 8, 692. DOI: 10.3389/fphar.2017.00692.
  • Davis, J. M.; Murphy, E. A.; Carmichael, M. D. Effects of the Dietary Flavonoid Quercetin upon Performance and Health. Curr. Sports Med. Rep. 2009, 8, 206–213. DOI: 10.1249/JSR.0b013e3181ae8959.
  • Li, Y.; Yao, J.; Han, C.; Yang, J.; Tabassum, C.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients 2016, 8, 167. DOI: 10.3390/nu8030167.
  • Karch, S.; Broichhagen, J.; Schneider, J.; Böning, D.; Hartmann, S.; Schmid, B.; Tripal, P.; Palmisano, R.; Alzheimer, C.; Johnsson, K.; Huth, T. A New Fluorogenic Small-Molecule Labeling Tool for Surface Diffusion Analysis and Advanced Fluorescence Imaging of β-Site Amyloid Precursor Protein-Cleaving Enzyme 1 Based on Silicone Rhodamine: SiR-BACE1. J. Med. Chem. 2018, 61, 6121–6139. DOI: 10.1021/acs.jmedchem.8b00387.
  • Prince, M.; Guerchet, M.; Prina, M. 2015. The Epidemiology and Impact of Dementia-Current State and Future Trends. WHO Thematic Briefing, London, UK.
  • Krstic, D.; Knuesel, I. Deciphering the Mechanism Underlying Late-Onset Alzheimer Disease. Nat. Rev. Neurol. 2013, 9, 25–34. DOI: 10.1038/nrneurol.2012.236.
  • Acquaviva, A.; Bouyahya, A.; Zengin, G.; Di Simone, S. C.; Recinella, L.; Leone, S.; Brunetti, L.; Uba, A. I.; Cakilcioğlu, U.; Polat, R., et al. Chemical Characterization of Different Extracts from Artemisia Annua and Their Antioxidant, Enzyme Inhibitory and anti-Inflammatory Properties. Chem. Biodivers. 2023, 20(8), e202300547. DOI: 10.1002/cbdv.202300547.
  • Lizama, C.; Romero-Parra, J.; Andrade, D.; Riveros, F.; Bórquez, J.; Ahmed, S.; Venegas-Salas, L.; Cabalín, C.; Simirgiotis, M. J. Analysis of Carotenoids in Haloarchaea Species from Atacama Saline Lakes by High Resolution UHPLC-Q-Orbitrap-Mass Spectrometry: Antioxidant Potential and Biological Effect on Cell Viability. Antioxidants 2021, 10, 1230. DOI: 10.3390/antiox10081230.
  • Ferreira, A.; Proença, C.; Serralheiro, M. L. M.; Araújo, M. E. M. The in Vitro Screening for Acetylcholinesterase Inhibition and Antioxidant Activity of Medicinal Plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37. DOI: 10.1016/j.jep.2006.04.010.
  • Ruangrit, K.; Chaipoot, S.; Phongphisutthinant, R.; Duangjan, K.; Phinyo, K.; Jeerapan, I.; Pekkoh, J.; Srinuanpan, S. A Successful Biorefinery Approach of Macroalgal Biomass as a Promising Sustainable Source to Produce Bioactive Nutraceutical and Biodiesel. Biomass Convers. Biorefin. 2021, 1–11.
  • Pekkoh, J.; Ruangrit, K.; Pumas, C.; Duangjan, K.; Chaipoot, S.; Phongphisutthinant, R.; Jeerapan, I.; Sawangrat, K.; Pathom-Aree, W.; Srinuanpan, S. Transforming Microalgal Chlorella Biomass into Cosmetically and Nutraceutically Protein Hydrolysates Using High-Efficiency Enzymatic Hydrolysis Approach. Biomass Conv. Bioref. 2023, 13, 6299–6315. DOI: 10.1007/s13399-021-01622-7.
  • Moosavi, F.; Hosseini, R.; Rajaian, H.; Silva, T.; Silva, D. M.; Saso, L.; Edraki, N.; Miri, R.; Borges, F.; Firuzi, O. Derivatives of Caffeic Acid, a Natural Antioxidant, as the Basis for the Discovery of Novel Nonpeptidic Neurotrophic Agents. Bioorg. Med. Chem. 2017, 25, 3235–3246. DOI: 10.1016/j.bmc.2017.04.026.
  • Kürkçüoğlu, M.; Ağalar, H.; Temiz, B.; Duran, A.; Paksoy, M.; Baser, K., Antioxidant, Antityrosinase Activities and Composition of Essential Oils Obtained from Roots and Fruits of Ferulago longistylis Boiss. J. Res. Pharm. 2022, 26.
  • Daşgın, S.; Gök, Y.; Celepci, D. B.; Taslimi, P.; Izmirli, M.; Aktaş, A.; Gülçin, İ. Synthesis, Characterization, Crystal Structure and Bioactivity Properties of the Benzimidazole-Functionalized PEPPSI Type of Pd (II) NHC Complexes. J. Mol. Struct. 2021, 1228, 129442. DOI: 10.1016/j.molstruc.2020.129442.
  • Aktas, A.; Barut Celepci, D.; Gok, Y.; Taslimi, P.; Akincioglu, H.; Gulcin, I. A Novel Ag-N-Heterocyclic Carbene Complex Bearing the Hydroxyethyl Ligand: Synthesis, Characterization, Crystal and Spectral Structures and Bioactivity Properties. Crystals 2020, 10, 171. DOI: 10.3390/cryst10030171.
  • Hashmi, S.; Khan, S.; Shafiq, Z.; Taslimi, P.; Ishaq, M.; Sadeghian, N.; Karaman, H. S.; Akhtar, N.; Islam, M.; Asari, A.; et al. Probing 4-(Diethylamino)-Salicylaldehyde-Based Thiosemicarbazones as Multi-Target Directed Ligands against Cholinesterases, Carbonic Anhydrases and α-Glycosidase Enzymes. Bioorg. Chem. 2021, 107, 104554. DOI: 10.1016/j.bioorg.2020.104554.
  • Wei, T.; Viliam, S.; Michael, L.; Yihui, X.; Yan, J.; Jeff, Z. Package ‘corrplot’. Statistician 2017, 56, e24.
  • Jacobo-Velázquez, D.; Cisneros-Zevallos, L. Correlations of Antioxidant Activity against Phenolic Content Revisited: A New Approach in Data Analysis for Food and Medicinal Plants. J. Food Sci. 2009, 74, R107–R113. DOI: 10.1111/j.1750-3841.2009.01352.x.
  • Kim, M.-Y.; Seguin, P.; Ahn, J.-K.; Kim, J.-J.; Chun, S.-C.; Kim, E.-H.; Seo, S.-H.; Kang, E.-Y.; Kim, S.-L.; Park, Y.-J.; et al. Phenolic Compound Concentration and Antioxidant Activities of Edible and Medicinal Mushrooms from Korea. J. Agric. Food Chem. 2008, 56, 7265–7270. DOI: 10.1021/jf8008553.
  • Stankovic, M. S. Total Phenolic Content, Flavonoid Concentration and Antioxidant Activity of Marrubium peregrinum L. Extracts. Kragujevac J. Sci. 2011, 33, 63–72.
  • Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant Activity and Phenolic Compounds in 32 Selected Herbs. Food Chem. 2007, 105, 940–949. DOI: 10.1016/j.foodchem.2007.04.038.
  • Rakita, S.; Torbica, A.; Pezo, L.; Nikolić, I. Effect of Climatic Conditions on Wheat Starch Granule Size Distribution, Gelatinization and Flour Pasting Properties. Agronomy 2023, 13, 1551.DOI: 10.3390/agronomy13061551.
  • Pyörälä, J.; Saarinen, N.; Kankare, V.; Coops, N. C.; Liang, X.; Wang, Y.; Holopainen, M.; Hyyppä, J.; Vastaranta, M. Variability of Wood Properties Using Airborne and Terrestrial Laser Scanning. Remote Sens. Environ. 2019, 235, 111474. DOI: 10.1016/j.rse.2019.111474.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.