54
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Proteases, a powerful biochemical tool in the service of medicine, clinical and pharmaceutical

, , , , &

References

  • Neurath, H. Proteolytic Enzymes, Past and Future. Proc. Natl. Acad. Sci. USA. 1999, 96, 10962–10963. DOI: 10.1073/pnas.96.20.10962.
  • López-Otín, C.; Bond, J. S. Proteases: Multifunctional Enzymes in Life and Disease. J. Biol. Chem. 2008, 283, 30433–30437. DOI: 10.1074/jbc.R800035200.
  • Rawlings, N. D.; Bateman, A. How to Use the MEROPS Database and Website to Help Understand Peptidase Specificity. Protein Sci. 2021, 30, 83–92. DOI: 10.1002/pro.3948.
  • Szabo, R.; Bugge, T. H. Type II Transmembrane Serine Proteases in Development and Disease. Int. J. Biochem. Cell Biol. 2008, 40, 1297–1316. DOI: 10.1016/j.biocel.2007.11.013.
  • Coll-Martínez, B.; Delgado, A.; Crosas, B. The Potential of Proteolytic Chimeras as Pharmacological Tools and Therapeutic Agents. Molecules. 2020, 25, 5956. DOI: 10.3390/molecules25245956.
  • Antalis, T. M.; Shea-Donohue, T.; Vogel, S. N.; Sears, C.; Fasano, A. Mechanisms of Disease: protease Functions in Intestinal Mucosal Pathobiology. Nat. Rev. Gastroenterol. Hepatol. 2007, 4, 393–402. DOI: 10.1038/ncpgasthep0846.
  • Takahashi, H.; Sawai, H.; Funahashi, H.; Matsuo, Y.; Yasuda, A.; Ochi, N.; Sato, M.; Okada, Y.; Takeyama, H. Antiproteases in Preventing the Invasive Potential of Pancreatic Cancer Cells. JOP. 2007, 8, 501–508.
  • Lennart, G.; Sabine, K.; Jennifer, D.; Judith, B.; Jens, B.; Jutta, H. Proteolytic Enzyme Therapy in Complementary Oncology: A Systematic Review. Anticancer Res. 2021, 41, 3213–3232. DOI: 10.21873/anticanres.15108.
  • Mótyán, J. A.; Tóth, F.; Tőzsér, J. Research Applications of Proteolytic Enzymes in Molecular Biology. Biomolecules. 2013, 3, 923–942. DOI: 10.3390/biom3040923.
  • Hooper, N. M. Proteases: A Primer. Essays Biochem. 2002, 38, 1–8. DOI: 10.1042/bse0380001.
  • Bond, J. S. Proteases: History, Discovery, and Roles in Health and Disease. J. Biol. Chem. 2019, 294, 1643–1651. DOI: 10.1074/jbc.TM118.004156.
  • Rao, M. B.; Tanksale, A. M.; Ghatge, M. S.; Deshpande, V. V. Molecular and Biotechnological Aspects of Microbial Proteases. Microbiol. Mol. Biol. Rev. 1998, 62, 597–635. DOI: 10.1128/MMBR.62.3.597-635.1998.
  • Sapio, M. R.; Fricker, L. D. Carboxypeptidases in Disease: insights from Peptidomic Studies. Proteom. Clin. Appl. 2014, 8, 327–337.
  • van der Velden VH, Hulsmann AR. Peptidases: structure, Function and Modulation of Peptide-Mediated Effects in the Human Lung. Clin Exp. Allergy. 1999;29(4):445–456. DOI: 10.1046/j.1365-2222.1999.00462.x.
  • Patel, S. A Critical Review on Serine Protease: Key Immune Manipulator and Pathology Mediator. Allergol. Immunopathol. 2017, 45, 579–591. DOI: 10.1016/j.aller.2016.10.011.
  • Hedstrom, L. Serine Protease Mechanism and Specificity. Chem. Rev. 2002, 102, 4501–4524. DOI: 10.1021/cr000033x.
  • Rawat, A.; Roy, M.; Jyoti, A.; Kaushik, S.; Verma, K.; Srivastava, V. K. Cysteine Proteases: Battling Pathogenic Parasitic Protozoans with Omnipresent Enzymes. Microbiol. Res. 2021, 249, 126784. DOI: 10.1016/j.micres.2021.126784.
  • Stepek, G.; Behnke, J. M.; Buttle, D. J.; Duce, I. R. Natural Plant Cysteine Proteinases as Anthelmintics? Trends Parasitol. 2004, 20, 322–327. DOI: 10.1016/j.pt.2004.05.003.
  • Fusek, M.; Mares, M.; Vetvicka, V. Chapter 8 - Cathepsin D. In Handbook of Proteolytic Enzymes, Third Edition; Rawlings, N. D., Salvesen, G., Eds. Academic Press: Elsevier Ltd, 2013; pp 54–63.
  • LaPointe, C. F.; Taylor, R. K. The Type 4 Prepilin Peptidases Comprise a Novel Family of Aspartic Acid Proteases. J. Biol. Chem. 2000, 275, 1502–1510. DOI: 10.1074/jbc.275.2.1502.
  • Rawlings, N. D.; Barrett, A. J. Evolutionary Families of Metallopeptidases. Methods in Enzymology, vol. 248; Academic Press, 1995; pp 183–228 DOI: 10.1016/0076-6879(95)48015-3.
  • Thomas, N. V.; Kim, S.-K. Metalloproteinase Inhibitors: Status and Scope from Marine Organisms. Biochem. Res. Int. 2010, 2010, 845975–845910. DOI: 10.1155/2010/845975.
  • Semenova, S. A.; Rudenskaya, G. The Astacin Family of Metalloproteinases. Biochem. Supple. Series B Biomed. Chem. 2009, 3, 17–32.
  • Vachher, M.; Sen, A.; Kapila, R.; Nigam, A. Microbial Therapeutic Enzymes: A Promising Area of Biopharmaceuticals. Curr. Res. Biotechnol. 2021, 3, 195–208. DOI: 10.1016/j.crbiot.2021.05.006.
  • Ward, O. P. 3.49 – Proteases. In Comprehensive Biotechnology, Second Edition; Moo-Young, M., Ed.; Academic Press: Burlington, 2011; pp 571–582.
  • Christensen, L. F.; García-Béjar, B.; Bang-Berthelsen, C. H.; Hansen, E. B. Extracellular Microbial Proteases with Specificity for Plant Proteins in Food Fermentation. Int. J. Food Microbiol. 2022, 381, 109889. DOI: 10.1016/j.ijfoodmicro.2022.109889.
  • Raveendran, S.; Parameswaran, B. Applications of Microbial Enzymes in Food Industry. Food Technol Biotechnol. 2018, 56, 16–30.
  • Papagianni, M. Fungal Morphology and Metabolite Production in Submerged Mycelial Processes. Biotechnol. Adv. 2004, 22, 189–259. DOI: 10.1016/j.biotechadv.2003.09.005.
  • Wang, H.; Ng, T. B. Pleureryn, a Novel Protease from Fresh Fruiting Bodies of the Edible Mushroom Pleurotus Eryngii. Biochem. Biophys. Res. Commun. 2001, 289, 750–755. DOI: 10.1006/bbrc.2001.6037.
  • Musatti, A.; Ficara, E.; Mapelli, C.; Sambusiti, C.; Rollini, M. Use of Solid Digestate for Lignocellulolytic Enzymes Production through Submerged Fungal Fermentation. J. Environ. Manage. 2017, 199, 1–6. DOI: 10.1016/j.jenvman.2017.05.022.
  • Erjavec, J.; Kos, J.; Ravnikar, M.; Dreo, T.; Sabotič, J. Proteins of Higher Fungi–from Forest to Application. Trends Biotechnol. 2012, 30, 259–273. DOI: 10.1016/j.tibtech.2012.01.004.
  • Faraco, V.; Palmieri, G.; Festa, G.; Monti, M.; Sannia, G.; Giardina, P. A New Subfamily of Fungal Subtilases: structural and Functional Analysis of a Pleurotus ostreatus Member. Microbiology. 2005, 151, 457–466. DOI: 10.1099/mic.0.27441-0.
  • Nurika, I.; Suhartini, S.; Barker, G. C. Biotransformation of Tropical Lignocellulosic Feedstock Using the Brown Rot Fungus Serpula Lacrymans. Waste Biomass Valor. 2020, 11, 2689–2700. DOI: 10.1007/s12649-019-00581-5.
  • Cha, W. S.; Park, S. S.; Kim, S. J.; Choi, D. Biochemical and Enzymatic Properties of a Fibrinolytic Enzyme from Pleurotus Eryngii Cultivated under Solid-State Conditions Using Corn Cob. Bioresour. Technol. 2010, 101, 6475–6481. DOI: 10.1016/j.biortech.2010.02.048.
  • Ng, T. B.; Wong, J. H.; Cheung, R. C. F.; Tse, T. F.; Tam, T.; Chan, H. Mushrooms: Proteins, Polysaccharidepeptide Complexes and Polysaccharides with Antiproliferative and Anticancer Activities. Int. J. Cancer Res. Prevent. 2014, 7, 287.
  • Lv, H.; Kong, Y.; Yao, Q.; Zhang, B.; Leng, F.-W.; Bian, H.-J.; Balzarini, J.; Van Damme, E.; Bao, J.-K. Nebrodeolysin, a Novel Hemolytic Protein from Mushroom Pleurotus Nebrodensis with Apoptosis-Inducing and anti-HIV-1 Effects. Phytomedicine. 2009, 16, 198–205. DOI: 10.1016/j.phymed.2008.07.004.
  • Srilakshmi, J.; Madhavi, J.; Lavanya, S.; Ammani, K. Commercial Potential of Fungal Protease: Past, Present and Future Prospects. J. Pharm. Chem. Biol. Sci. 2015, 2, 218–234.
  • Berne, S.; Krizaj, I.; Pohleven, F.; Turk, T.; Macek, P.; Sepcić, K. Pleurotus and Agrocybe Hemolysins, New Proteins Hypothetically Involved in Fungal Fruiting. Biochim. Biophys. Acta. 2002, 1570, 153–159. DOI: 10.1016/s0304-4165(02)00190-3.
  • Rani, M.; Prasad, N.; Sambasivarao, K. Optimization of Cultural Conditions for the Production of Alkaline Protease from a Mutant Aspergillus Flavus AS2. Asian J. Exp. Biol. Sci. 2012, 3, 565–576.
  • Barthomeuf, C.; Pourrat, H.; Pourrat, A. Collagenolytic Activity of a New Semi-Alkaline Protease from Aspergillus Niger. J. Ferment. Bioeng. 1992, 73, 233–236. DOI: 10.1016/0922-338X(92)90168-T.
  • El-Ghonemy, D. H.; Ali, T. H. Effective Bioconversion of Feather-Waste Keratin by Thermo-Surfactant Stable Alkaline Keratinase Produced from Aspergillus sp. DHE7 with Promising Biotechnological Application in Detergent Formulations. Biocatal. Agric. Biotechnol. 2021, 35, 102052. DOI: 10.1016/j.bcab.2021.102052.
  • Gurumallesh, P.; Alagu, K.; Ramakrishnan, B.; Muthusamy, S. A Systematic Reconsideration on Proteases. Int. J. Biol. Macromol. 2019, 128, 254–267. DOI: 10.1016/j.ijbiomac.2019.01.081.
  • Matkawala, F.; Nighojkar, S.; Kumar, A.; Nighojkar, A. Microbial Alkaline Serine Proteases: Production, Properties and Applications. World J. Microbiol. Biotechnol. 2021, 37, 63. DOI: 10.1007/s11274-021-03036-z.
  • López-Otín, C.; Matrisian, L. M. Emerging Roles of Proteases in Tumour Suppression. Nat. Rev. Cancer 2007, 7, 800–808. DOI: 10.1038/nrc2228.
  • Kwon, Y. T.; Ciechanover, A. The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends Biochem. Sci. 2017, 42, 873–886. DOI: 10.1016/j.tibs.2017.09.002.
  • Liu, J.; Shaik, S.; Dai, X.; Wu, Q.; Zhou, X.; Wang, Z.; Wei, W. Targeting the Ubiquitin Pathway for Cancer Treatment. Biochim. Biophys. Acta. 2015, 1855, 50–60. DOI: 10.1016/j.bbcan.2014.11.005.
  • Green, P. H.; Lebwohl, B.; Greywoode, R. Celiac Disease. J. Allergy Clin. Immunol. 2015, 135, 1099–1106; quiz 1107. DOI: 10.1016/j.jaci.2015.01.044.
  • Makharia, G. K. Current and Emerging Therapy for Celiac Disease. Front. Med. 2014, 1, 6. DOI: 10.3389/fmed.2014.00006.
  • Caruso, J. A.; Akli, S.; Pageon, L.; Hunt, K. K.; Keyomarsi, K. The Serine Protease Inhibitor Elafin Maintains Normal Growth Control by Opposing the Mitogenic Effects of Neutrophil Elastase. Oncogene. 2015, 34, 3556–3567. DOI: 10.1038/onc.2014.284.
  • Galipeau, H. J.; Wiepjes, M.; Motta, J.-P.; Schulz, J. D.; Jury, J.; Natividad, J. M.; Pinto-Sanchez, I.; Sinclair, D.; Rousset, P.; Martin-Rosique, R.; et al. Novel Role of the Serine Protease Inhibitor Elafin in Gluten-Related Disorders. Am. J. Gastroenterol. 2014, 109, 748–756. DOI: 10.1038/ajg.2014.48.
  • Ghetti B, Tagliavini F, Kovacs G, Picardo P. Gerstmann–Sträussler–Scheinker Disease. Dickson D, Weller RO, editors. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders, vol. 2; Wiley-Blackwell: Burlington; 2011.
  • Iwasaki, Y. Creutzfeldt-Jakob Disease. Neuropathology. 2017, 37, 174–188. DOI: 10.1111/neup.12355.
  • Yoshioka, M.; Miwa, T.; Horii, H.; Takata, M.; Yokoyama, T.; Nishizawa, K.; Watanabe, M.; Shinagawa, M.; Murayama, Y. Characterization of a Proteolytic Enzyme Derived from a Bacillus Strain That Effectively Degrades Prion Protein. J. Appl. Microbiol. 2007, 102, 509–515. DOI: 10.1111/j.1365-2672.2006.03080.x.
  • Rajput, R.; Gupta, R. Thermostable Keratinase from Bacillus pumilus KS12: production, Chitin Crosslinking and Degradation of Sup35NM Aggregates. Bioresour. Technol. 2013, 133, 118–126. DOI: 10.1016/j.biortech.2013.01.091.
  • Gradisar, H.; Friedrich, J.; Krizaj, I.; Jerala, R. Similarities and Specificities of Fungal Keratinolytic Proteases: Comparison of Keratinases of Paecilomyces Marquandii and Doratomyces Microsporus to Some Known Proteases. Appl. Environ. Microbiol. 2005, 71, 3420–3426. DOI: 10.1128/AEM.71.7.3420-3426.2005.
  • Espersen, R.; Huang, Y. Exceptionally Rich Keratinolytic Enzyme Profile Found in the Rare Actinomycetes Amycolatopsis keratiniphila D2(T). Appl Microbiol Biotechnol. 2021, 105, 8129–8138.
  • Cotabarren, J.; Lufrano, D.; Parisi, M. G.; Obregón, W. D. Biotechnological, Biomedical, and Agronomical Applications of Plant Protease Inhibitors with High Stability: A Systematic Review. Plant Sci. 2020, 292, 110398. DOI: 10.1016/j.plantsci.2019.110398.
  • Barzkar, N.; Sohail, M.; Tamadoni Jahromi, S.; Nahavandi, R.; Khodadadi, M. Marine Microbial L-Glutaminase: From Pharmaceutical to Food Industry. Appl. Microbiol. Biotechnol. 2021, 105, 4453–4466. DOI: 10.1007/s00253-021-11356-1.
  • Rudzińska, M.; Daglioglu, C. Current Status and Perspectives of Protease Inhibitors and Their Combination with Nanosized Drug Delivery Systems for Targeted Cancer Therapy. Drug Des Devel Ther. 2021, 15, 9–20.
  • Razzaq, A.; Shamsi, S.; Ali, A.; Ali, Q.; Sajjad, M.; Malik, A.; Ashraf, M. Microbial Proteases Applications. Front. Bioeng. Biotechnol. 2019, 7, 110. DOI: 10.3389/fbioe.2019.00110.
  • Naveed, M.; Nadeem, F.; Mehmood, T.; Bilal, M.; Anwar, Z.; Amjad, F. Protease—A Versatile and Ecofriendly Biocatalyst with Multi-Industrial Applications: An Updated Review. Catal. Lett. 2021, 151, 307–323. DOI: 10.1007/s10562-020-03316-7.
  • Awad, M. F.; El-Shenawy, F. S.; El-Gendy, M.; El-Bondkly, E. A. M. Purification, Characterization, and Anticancer and Antioxidant Activities of L-Glutaminase from Aspergillus versicolor Faesay4. Int Microbiol. 2021, 24, 169–181.
  • Zhao, X. Q. Genome-Based Studies of Marine Microorganisms to Maximize the Diversity of Natural Products Discovery for Medical Treatments. Evid. Based Complement. Alternat. Med. 2011, 2011, 1–11. DOI: 10.1155/2011/384572.
  • Barzkar, N.; Attaran Fariman, G.; Taheri, A. Proximate Composition and Mineral Contents in the Body Wall of Two Species of Sea Cucumber from Oman Sea. Environ. Sci. Pollut. Res. Int. 2017, 24, 18907–18911. DOI: 10.1007/s11356-017-9379-5.
  • Farha, A. K.; Tr, T.; Purushothaman, A.; Salam, J. A.; Hatha, A. M. Phylogenetic Diversity and Biotechnological Potentials of Marine Bacteria from Continental Slope of Eastern Arabian Sea. J. Genet. Eng. Biotechnol. 2018, 16, 253–258.
  • Barzkar, N.; Homaei, A.; Hemmati, R.; Patel, S. Thermostable Marine Microbial Proteases for Industrial Applications: scopes and Risks. Extremophiles. 2018, 22, 335–346. DOI: 10.1007/s00792-018-1009-8.
  • Bose, A.; Chawdhary, V.; Keharia, H.; Subramanian, R. B. Production and Characterization of a Solvent-Tolerant Protease from a Novel Marine Isolate Bacillus tequilensis P15. Ann. Microbiol. 2014, 64, 343–354. DOI: 10.1007/s13213-013-0669-y.
  • Dumorné, K.; Severe, R. Marine Enzymes and Their Industrial and Biotechnological Applications. Minerva Biotechnol. 2018, 30, 113–119. DOI: 10.23736/S1120-4826.18.02442-4.
  • Hakim, A.; Bhuiyan, F. R.; Iqbal, A.; Emon, T. H.; Ahmed, J.; Azad, A. K. Production and Partial Characterization of Dehairing Alkaline Protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 by Using Organic Municipal Solid Wastes. Heliyon. 2018, 4, e00646. DOI: 10.1016/j.heliyon.2018.e00646.
  • Barzkar, N. Marine Microbial Alkaline Protease: An Efficient and Essential Tool for Various Industrial Applications. Int. J. Biol. Macromol. 2020, 161, 1216–1229. DOI: 10.1016/j.ijbiomac.2020.06.072.
  • Subhashini, P.; Annamalai, N.; Saravanakumar, A.; Balasubramanian, T. Thermostable Alkaline Protease from Newly Isolated Vibrio sp.: Extraction, Purification and Characterisation. Biologia. 2012, 67, 629–635. DOI: 10.2478/s11756-012-0067-0.
  • Wu, S.; Liu, G.; Zhang, D.; Li, C.; Sun, C. Purification and Biochemical Characterization of an Alkaline Protease from Marine Bacteria Pseudoalteromonas sp. 129-1. J. Basic Microbiol. 2015, 55, 1427–1434. DOI: 10.1002/jobm.201500327.
  • Ramesh, S.; Rajesh, M.; Mathivanan, N. Characterization of a Thermostable Alkaline Protease Produced by Marine Streptomyces Fungicidicus MML1614. Bioprocess Biosyst. Eng. 2009, 32, 791–800. DOI: 10.1007/s00449-009-0305-1.
  • Maruthiah, T.; Somanath, B.; Jasmin, J. V.; Immanuel, G.; Palavesam, A. Production, Purification and Characterization of Halophilic Organic Solvent Tolerant Protease from Marine Crustacean Shell Wastes and Its Efficacy on Deproteinization. 3 Biotech. 2016, 6, 157. DOI: 10.1007/s13205-016-0474-y.
  • Griffin, H. L.; Greene, R. V.; Cotta, M. A. Isolation and Characterization of an Alkaline Protease from the Marine Shipworm Bacterium. Curr. Microbiol. 1992, 24, 111–117. DOI: 10.1007/BF01570907.
  • Hameş-Kocabaş, E. E.; Uzel, A. Alkaline Protease Production by an Actinomycete MA1-1 Isolated from Marine Sediments. Ann. Microbiol. 2007, 57, 71–75. DOI: 10.1007/BF03175053.
  • Dutta, D.; Cole, N.; Willcox, M. Factors Influencing Bacterial Adhesion to Contact Lenses. Mol. Vis. 2012, 18, 14–21.
  • Willcox, M. D.; Holden, B. A. Contact Lens Related Corneal Infections. Biosci. Rep. 2001, 21, 445–461. DOI: 10.1023/a:1017991709846.
  • Szczotka-Flynn, L. B.; Pearlman, E.; Ghannoum, M. Microbial Contamination of Contact Lenses, Lens Care Solutions, and Their Accessories: A Literature Review. Eye Contact Lens. 2010, 36, 116–129. DOI: 10.1097/ICL.0b013e3181d20cae.
  • Bruinsma, G. M.; van der Mei, H. C.; Busscher, H. J. Bacterial Adhesion to Surface Hydrophilic and Hydrophobic Contact Lenses. Biomaterials. 2001, 22, 3217–3224. DOI: 10.1016/s0142-9612(01)00159-4.
  • Jadhav, A.; Khatib, S.; Harale, M.; Gadre, S.; Williamson, M. Study of Protease Enzyme from Bacillus Species and Its Application as a Contact Lens Cleanser. British Biomed. Bullet. 2014, 2, 293–302.
  • Greene, R. V.; Griffin, H. L.; Cotta, M. A. Utility of Alkaline Protease from Marine Shipworm Bacterium in Industrial Cleansing Applications. Biotechnol. Lett. 1996, 18, 759–764. DOI: 10.1007/BF00127884.
  • Saggu, S. K.; Jha, G.; Mishra, P. C. Enzymatic Degradation of Biofilm by Metalloprotease from Microbacterium sp. SKS10. Front. Bioeng. Biotechnol. 2019, 7, 192. DOI: 10.3389/fbioe.2019.00192.
  • Ganapathy, K.; Dhinakarasamy, I.; Sathiyamurthi, D. N.; Riyaz, S. U. M. Antifouling Activity of Alkaline Protease from Halotolerant Bacillus sp. isolated from Marine Source. Indian J. Geo Marine Sci. 2019, 48, 1274–1279.
  • Hippauf, F.; Huettner, C.; Lunow, D.; Borchardt, L.; Henle, T.; Kaskel, S. Towards a Continuous Adsorption Process for the Enrichment of ACE-Inhibiting Peptides from Food Protein Hydrolysates. Carbon. 2016, 107, 116–123. DOI: 10.1016/j.carbon.2016.05.062.
  • Raghavan, S.; Kristinsson, H. G. ACE-Inhibitory Activity of Tilapia Protein Hydrolysates. Food Chem. 2009, 117, 582–588. DOI: 10.1016/j.foodchem.2009.04.058.
  • Pfeffer, M. A. Angiotensin-Converting Enzyme Inhibition in Congestive Heart Failure: Benefit and Perspective. Am. Heart J. 1993, 126, 789–793. DOI: 10.1016/0002-8703(93)90931-x.
  • Wijesekara, I.; Kim, S. K. Angiotensin-I-Converting Enzyme (ACE) Inhibitors from Marine Resources: prospects in the Pharmaceutical Industry. Mar. Drugs. 2010, 8, 1080–1093. DOI: 10.3390/md8041080.
  • Alemán, A.; Giménez, B.; Montero, P.; Gómez-Guillén, M. C. Antioxidant Activity of Several Marine Skin Gelatins. LWT Food Sci. Technol. 2011, 44, 407–413. DOI: 10.1016/j.lwt.2010.09.003.
  • Materson, B. J. Adverse Effects of Angiotensin-Converting Enzyme Inhibitors in Antihypertensive Therapy with Focus on Quinapril. Am. J. Cardiol. 1992, 69, 46c–53c. DOI: 10.1016/0002-9149(92)90281-3.
  • Unnikrishnan, D.; Murakonda, P.; Dharmarajan, T. S. If It is Not Cough, It Must Be Dysgeusia: differing Adverse Effects of Angiotensin-Converting Enzyme Inhibitors in the Same Individual. J. Am. Med. Dir. Assoc. 2004, 5, 107–110. DOI: 10.1097/01.JAM.0000110651.94489.1A.
  • Kamath, V.; Niketh, S.; Chandrashekar, A.; Rajini, P. S. Chymotryptic Hydrolysates of α-Kafirin, the Storage Protein of Sorghum (Sorghum bicolor) Exhibited Angiotensin Converting Enzyme Inhibitory Activity. Food Chem. 2007, 100, 306–311. DOI: 10.1016/j.foodchem.2005.10.004.
  • Lee, S. Y.; Hur, S. J. Antihypertensive Peptides from Animal Products, Marine Organisms, and Plants. Food Chem. 2017, 228, 506–517. DOI: 10.1016/j.foodchem.2017.02.039.
  • Pangestuti, R.; Kim, S.-K. Marine Bioactive Peptide Sources: Critical Points and the Potential for New Therapeutics. Marine Prot. Peptid. 2013, 533–544.
  • Ahn, C.-B.; Jeon, Y.-J.; Kim, Y.-T.; Je, J.-Y. Angiotensin I Converting Enzyme (ACE) Inhibitory Peptides from Salmon Byproduct Protein Hydrolysate by Alcalase Hydrolysis. Process Biochem. 2012, 47, 2240–2245. DOI: 10.1016/j.procbio.2012.08.019.
  • Bougatef, A.; Nedjar-Arroume, N.; Ravallec-Plé, R.; Leroy, Y.; Guillochon, D.; Barkia, A.; Nasri, M. Angiotensin I-Converting Enzyme (ACE) Inhibitory Activities of Sardinelle (Sardinella Aurita) by-Products Protein Hydrolysates Obtained by Treatment with Microbial and Visceral Fish Serine Proteases. Food Chem. 2008, 111, 350–356. DOI: 10.1016/j.foodchem.2008.03.074.
  • Hai-Lun, H.; Xiu-Lan, C.; Cai-Yun, S.; Yu-Zhong, Z.; Bai-Cheng, Z. Analysis of Novel angiotensin-I-Converting Enzyme Inhibitory Peptides from Protease-Hydrolyzed Marine Shrimp Acetes Chinensis. J. Peptid. Sci. 2006, 12, 726–733. DOI: 10.1002/psc.789.
  • Lee, S.-H.; Qian, Z.-J.; Kim, S.-K. A Novel Angiotensin I Converting Enzyme Inhibitory Peptide from Tuna Frame Protein Hydrolysate and Its Antihypertensive Effect in Spontaneously Hypertensive Rats. Food Chem. 2010, 118, 96–102. DOI: 10.1016/j.foodchem.2009.04.086.
  • Ma, C.; Ni, X.; Chi, Z.; Ma, L.; Gao, L. Purification and Characterization of an Alkaline Protease from the Marine Yeast Aureobasidium Pullulans for Bioactive Peptide Production from Different Sources. Mar. Biotechnol. 2007, 9, 343–351. DOI: 10.1007/s10126-006-6105-6.
  • Li, J.; Chi, Z.; Wang, X.; Peng, Y.; Chi, Z. The Selection of Alkaline Protease-Producing Yeasts from Marine Environments and Evaluation of Their Bioactive Peptide Production. Chin. J. Ocean. Limnol. 2009, 27, 753–761. DOI: 10.1007/s00343-009-9198-8.
  • Lim, S.; Choi, A.-H.; Kwon, M.; Joung, E.-J.; Shin, T.; Lee, S.-G.; Kim, N.-G.; Kim, H.-R. Evaluation of Antioxidant Activities of Various Solvent Extract from Sargassum Serratifolium and Its Major Antioxidant Components. Food Chem. 2019, 278, 178–184. DOI: 10.1016/j.foodchem.2018.11.058.
  • He, Y.; Pan, X.; Chi, C.-F.; Sun, K.-L.; Wang, B. Ten New Pentapeptides from Protein Hydrolysate of Miiuy Croaker (Miichthys Miiuy) Muscle: Preparation, Identification, and Antioxidant Activity Evaluation. LWT. 2019, 105, 1–8. DOI: 10.1016/j.lwt.2019.01.054.
  • Luisi, G.; Stefanucci, A.; Zengin, G.; Dimmito, M. P.; Mollica, A. Anti-Oxidant and Tyrosinase Inhibitory in Vitro Activity of Amino Acids and Small Peptides: New Hints for the Multifaceted Treatment of Neurologic and Metabolic Disfunctions. 2018, 8, 7.
  • Ngo, D.-H.; Wijesekara, I.; Vo, T.-S.; Van Ta, Q.; Kim, S.-K. Marine Food-Derived Functional Ingredients as Potential Antioxidants in the Food Industry: An Overview. Food Res. Int. 2011, 44, 523–529. DOI: 10.1016/j.foodres.2010.12.030.
  • Harnedy, P. A.; O’Keeffe, M. B.; FitzGerald, R. J. Fractionation and Identification of Antioxidant Peptides from an Enzymatically Hydrolysed Palmaria Palmata Protein Isolate. Food Res. Int. 2017, 100, 416–422. DOI: 10.1016/j.foodres.2017.07.037.
  • Liu, C.; Hong, J.; Yang, H.; Wu, J.; Ma, D.; Li, D.; Lin, D.; Lai, R. Frog Skins Keep Redox Homeostasis by Antioxidant Peptides with Rapid Radical Scavenging Ability. Free Radic. Biol. Med. 2010, 48, 1173–1181. DOI: 10.1016/j.freeradbiomed.2010.01.036.
  • Sila, A.; Bougatef, A. Antioxidant Peptides from Marine by-Products: Isolation, Identification and Application in Food Systems. A Review. J. Funct. Foods. 2016, 21, 10–26. DOI: 10.1016/j.jff.2015.11.007.
  • Wang, B.; Wang, Y. M.; Chi, C. F.; Luo, H. Y.; Deng, S. G.; Ma, J. Y. Isolation and Characterization of Collagen and Antioxidant Collagen Peptides from Scales of Croceine Croaker (Pseudosciaena Crocea). Mar. Drugs. 2013, 11, 4641–4661. DOI: 10.3390/md11114641.
  • Barzkar, N.; Tamadoni Jahromi, S.; Poorsaheli, H. B.; Vianello, F. Metabolites from Marine Microorganisms, Micro, and Macroalgae: Immense Scope for Pharmacology. Mar. Drugs. 2019, 17, 464. DOI: 10.3390/md17080464.
  • Agyei, D.; Ongkudon, C. M.; Wei, C. Y.; Chan, A. S.; Danquah, M. K. Bioprocess Challenges to the Isolation and Purification of Bioactive Peptides. Food Bioprod. Process. 2016, 98, 244–256. DOI: 10.1016/j.fbp.2016.02.003.
  • Lorenzo, J. M.; Munekata, P. E. S.; Gómez, B.; Barba, F. J.; Mora, L.; Pérez-Santaescolástica, C.; Toldrá, F. Bioactive Peptides as Natural Antioxidants in Food Products – a Review. Trends Food Sci. Technol. 2018, 79, 136–147. DOI: 10.1016/j.tifs.2018.07.003.
  • Chi, C. F.; Hu, F. Y.; Wang, B.; Li, Z. R.; Luo, H. Y. Influence of Amino Acid Compositions and Peptide Profiles on Antioxidant Capacities of Two Protein Hydrolysates from Skipjack Tuna (Katsuwonus Pelamis) Dark Muscle. Mar. Drugs. 2015, 13, 2580–2601. DOI: 10.3390/md13052580.
  • Wang, B.; Li, L.; Chi, C. F.; Ma, J. H.; Luo, H. Y.; Xu, Y. F. Purification and Characterisation of a Novel Antioxidant Peptide Derived from Blue Mussel (Mytilus Edulis) Protein Hydrolysate. Food Chem. 2013, 138, 1713–1719. DOI: 10.1016/j.foodchem.2012.12.002.
  • Yang, X. R.; Zhang, L.; Ding, D. G.; Chi, C. F. Preparation. Identification, and Activity Evaluation of Eight Antioxidant Peptides from Protein Hydrolysate of Hairtail (Trichiurus Japonicas) Muscle. 2019, 17, 23.
  • Ni, X.; Yue, L.; Chi, Z.; Li, J.; Wang, X.; Madzak, C. Alkaline Protease Gene Cloning from the Marine Yeast Aureobasidium Pullulans HN2-3 and the Protease Surface Display on Yarrowia lipolytica for Bioactive Peptide Production. Mar. Biotechnol. 2009, 11, 81–89. DOI: 10.1007/s10126-008-9122-9.
  • Annamalai, N.; Rajeswari, M. V.; Thavasi, R.; Vijayalakshmi, S.; Balasubramanian, T. Optimization, Purification and Characterization of Novel Thermostable, Haloalkaline, Solvent Stable Protease from Bacillus halodurans CAS6 Using Marine Shellfish Wastes: A Potential Additive for Detergent and Antioxidant Synthesis. Bioprocess Biosyst. Eng. 2013, 36, 873–883. DOI: 10.1007/s00449-012-0820-3.
  • Liu, D.; Huang, J.; Wu, C.; Liu, C.; Huang, R.; Wang, W.; Yin, T.; Yan, X.; He, H.; Chen, L.; et al. Purification, Characterization, and Application for Preparation of Antioxidant Peptides of Extracellular Protease from Pseudoalteromonas sp. H2. Molecules. 2019, 24, DOI: 10.3390/molecules24183373.
  • Maruthiah, T.; Immanuel, G.; Palavesam, A. Purification and Characterization of Halophilic Organic Solvent Tolerant Protease from Marine Bacillus sp. APCMST-RS7 and Its Antioxidant Potentials. Proc. Natl. Acad. Sci, India, Sect. B Biol. Sci. 2015, 87, 207–216. DOI: 10.1007/s40011-015-0603-0.
  • Simkhada, J. R.; Mander, P.; Cho, S. S.; Yoo, J. C. A Novel Fibrinolytic Protease from Streptomyces sp. CS684. Process Biochem. 2010, 45, 88–93. DOI: 10.1016/j.procbio.2009.08.010.
  • Wolberg, A. S. Thrombin Generation and Fibrin Clot Structure. Blood Rev. 2007, 21, 131–142. DOI: 10.1016/j.blre.2006.11.001.
  • Peng, Y.; Yang, X.; Zhang, Y. Microbial Fibrinolytic Enzymes: An Overview of Source, Production, Properties, and Thrombolytic Activity in Vivo. Appl. Microbiol. Biotechnol. 2005, 69, 126–132. DOI: 10.1007/s00253-005-0159-7.
  • Koo, K. B.; Suh, H. J.; Ra, K. S.; Kim, Y. H.; Joo, H.-S.; Choi, J. W. Fibrinolytic Activity of a Novel Serine Protease from the Hemolymph of a Polychaeta, Periserrula Leucophryna. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 149–157.
  • Yeo, W. S.; Seo, M. J.; Kim, M. J.; Lee, H. H.; Kang, B. W.; Park, J. U.; Choi, Y. H.; Jeong, Y. K. Biochemical Analysis of a Fibrinolytic Enzyme Purified from Bacillus subtilis Strain A1. J. Microbiol. 2011, 49, 376–380. DOI: 10.1007/s12275-011-1165-3.
  • Deng, Z.; Wang, S.; Li, Q.; Ji, X.; Zhang, L.; Hong, M. Purification and Characterization of a Novel Fibrinolytic Enzyme from the Polychaete, Neanthes Japonica (Iznka). Bioresour. Technol. 2010, 101, 1954–1960. DOI: 10.1016/j.biortech.2009.10.014.
  • Masilamani, R.; Natarajan, S. Molecular Cloning, Overexpression and Characterization of a New Thiol-Dependent, Alkaline Serine Protease with Destaining Function and Fibrinolytic Potential from Marinobacter aquaeolei MS2-1. Biologia. 2015, 70, 1143–1149. DOI: 10.1515/biolog-2015-0144.
  • Cheng, Q.; Xu, F.; Hu, N.; Liu, X.; Liu, Z. A Novel Ca2+-Dependent Alkaline Serine-Protease (Bvsp) from Bacillus sp. with High Fibrinolytic Activity. J. Mol. Catal. B: Enzym. 2015, 117, 69–74. DOI: 10.1016/j.molcatb.2015.04.006.
  • Ansari, A.; Zohra, R. R.; Tarar, O. M.; Qader, S. A. U.; Aman, A. Screening, Purification and Characterization of Thermostable, Protease Resistant Bacteriocin Active against Methicillin Resistant Staphylococcus aureus (MRSA). BMC Microbiol. 2018, 18, 192. DOI: 10.1186/s12866-018-1337-y.
  • Culp, E.; Wright, G. D. Bacterial Proteases, Untapped Antimicrobial Drug Targets. J. Antibiot. 2017, 70, 366–377. DOI: 10.1038/ja.2016.138.
  • Tsuchiya, K.; Nakamura, Y.; Sakashita, H.; Kimura, T. Purification and Characterization of a Thermostable Alkaline Protease from Alkalophilic Thermoactinomyces sp. HS682. Biosci. Biotechnol. Biochem. 1992, 56, 246–250. DOI: 10.1271/bbb.56.246.
  • Rs, R.; Ap, L.; V, T.; Ar, S.; J, S. Production of Protease Showing Antibacterial Activity by Bacillus subtilis VCDA Associated with Tropical Marine Sponge Callyspongia Diffusa. J. Microb. Biochem. Technol. 2017, 09. DOI: 10.4172/1948-5948.1000376.
  • Mane, M. N.; Kokare, K. M. C.; Purification, C.; ANDApplications, O. F.; Thermostable, A.; Protease, F. R. O. M.; Marine, S.; Sp, D. 1. Purification, Characterization and Applications of Thermostable Alkaline Protease from Marine Streptomyces sp. D1. Inter J. Pharma and Bio Sci. 2013, 4, 572–582.
  • Wu, P.; Stapleton, F.; Willcox, M. D. P. The Causes of and Cures for Contact Lens-Induced Peripheral Ulcer. Eye Contact Lens. 2003, 29, S63. DOI: 10.1097/00140068-200301001-00018.
  • Pawar, R.; Zambare, V.; Siddhivinayak, B.; Govind, P. Application of Protease Isolated from Bacillus sp. 158 in Enzymatic Cleansing of Contact Lenses. Biotechnology. 2009, 8, 276–280. DOI: 10.3923/biotech.2009.276.280.
  • Alagarsamy, S.; Larroche, C.; Pandey, A. Microbiology and Industrial Biotechnology of Food-Grade Proteases: A Perspective. Food Technol. Biotechnol. 2006, 44, 211–220.
  • Prusiner, S. B. Prions. Proc. Natl. Acad. Sci. USA. 1998, 95, 13363–13383. DOI: 10.1073/pnas.95.23.13363.
  • Leske, H.; Hornemann, S.; Herrmann, U. S.; Zhu, C.; Dametto, P.; Li, B.; Laferriere, F.; Polymenidou, M.; Pelczar, P.; Reimann, R. R.; et al. Protease Resistance of Infectious Prions is Suppressed by Removal of a Single Atom in the Cellular Prion Protein. PLOS One. 2017, 12, e0170503. DOI: 10.1371/journal.pone.0170503.
  • Torres, C. E.; Lenon, G.; Craperi, D.; Wilting, R.; Blanco, A. Enzymatic Treatment for Preventing Biofilm Formation in the Paper Industry. Appl. Microbiol. Biotechnol. 2011, 92, 95–103. DOI: 10.1007/s00253-011-3305-4.
  • Mechmechani, S.; Khelissa, S.; Gharsallaoui, A.; Omari, K. E.; Hamze, M.; Chihib, N. E. Hurdle Technology Using Encapsulated Enzymes and Essential Oils to Fight Bacterial Biofilms. Appl Microbiol Biotechnol. 2022, 106, 2311–2335.
  • Di Martino, P. Extracellular Polymeric Substances, a Key Element in Understanding Biofilm Phenotype. AIMS Microbiol. 2018, 4, 274–288. DOI: 10.3934/microbiol.2018.2.274.
  • Murshid, S.; Antonysamy, A.; Dhakshinamoorthy, G.; Jayaseelan, A.; Pugazhendhi, A. A Review on Biofilm-Based Reactors for Wastewater Treatment: Recent Advancements in Biofilm Carriers, Kinetics, Reactors, Economics, and Future Perspectives. Sci. Total Environ. 2023, 892, 164796. DOI: 10.1016/j.scitotenv.2023.164796.
  • Shineh, G.; Mobaraki, M.; Perves Bappy, M. J.; Mills, D. K. Biofilm Formation, and Related Impacts on Healthcare, Food Processing and Packaging, Industrial Manufacturing, Marine Industries, and Sanitation; a Review. Appl. Microbiol. 2023, 3, [629–665. pp.]. DOI: 10.3390/applmicrobiol3030044.
  • Yin, W.; Xu, S.; Wang, Y.; Zhang, Y.; Chou, S. H. Ways to Control Harmful Biofilms: prevention, Inhibition, and Eradication. Crit Rev Microbiol. 2021, 47, 57–78.
  • Hoek, E. M. V.; Weigand, T. M.; Edalat, A. Reverse Osmosis Membrane Biofouling: Causes, Consequences and Countermeasures. NPJ Clean Water. 2022, 5, 45. DOI: 10.1038/s41545-022-00183-0.
  • Sharma, S.; Mohler, J. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms. 2023, 11, 1614.
  • Muhammad, M. H.; Idris, A. L.; Fan, X.; Guo, Y.; Yu, Y.; Jin, X.; Qiu, J.; Guan, X.; Huang, T. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front. Microbiol. 2020, 11, 928. DOI: 10.3389/fmicb.2020.00928.
  • Galié, S.; García-Gutiérrez, C.; Miguélez, E. M.; Villar, C. J.; Lombó, F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front. Microbiol. 2018, 9, 898. DOI: 10.3389/fmicb.2018.00898.
  • Gupta, M.; Bajaj, B. K. Functional Characterization of Potential Probiotic Lactic Acid Bacteria Isolated from Kalarei and Development of Probiotic Fermented Oat Flour. Probiotics Antimicrob. Proteins. 2018, 10, 654–661. DOI: 10.1007/s12602-017-9306-6.
  • Ostrov, I.; Harel, A.; Bernstein, S.; Steinberg, D.; Shemesh, M. Development of a Method to Determine the Effectiveness of Cleaning Agents in Removal of Biofilm Derived Spores in Milking System. Front. Microbiol. 2016, 7, 1498. DOI: 10.3389/fmicb.2016.01498.
  • Abdelhamid, A. G.; Yousef, A. E. Combating Bacterial Biofilms: Current and Emerging Antibiofilm Strategies for Treating Persistent Infections. Antibiotics. 2023, 12, 1005. DOI: 10.3390/antibiotics12061005.
  • Deinhammer, R.; Andersen, C. Methods for Preventing, Removing, Reducing, or Disrupting Biofilm. US Papent. 2019.
  • Molobela, I.; Cloete, T.; Beukes, M. Protease and Amylase Enzymes for Biofilm Removal and Degradation of Extracellular Polymeric Substances (EPS) Produced by Pseudomonas fluorescens Bacteria. African J. Microbiol. Res. 2010, 4, 1515–1524.
  • Oulahal-Lagsir, N.; Martial-Gros, A.; Bonneau, M.; Blum, L. J. "Escherichia coli-Milk" Biofilm Removal from Stainless Steel Surfaces: Synergism Between Ultrasonic Waves and Enzymes. Biofouling. 2003, 19, 159–168. DOI: 10.1080/08927014.2003.10382978.
  • Orgaz, B.; Kives, J.; Pedregosa, A. M.; Monistrol, I. F.; Laborda, F.; SanJosé, C. Bacterial Biofilm Removal Using Fungal Enzymes. Enzyme Microb. Technol. 2006, 40, 51–56. DOI: 10.1016/j.enzmictec.2005.10.037.
  • Ząbczyk, M.; Ariëns, R. A. S.; Undas, A. Fibrin Clot Properties in Cardiovascular Disease: From Basic Mechanisms to Clinical Practice. Cardiovasc. Res. 2023, 119, 94–111. DOI: 10.1093/cvr/cvad017.
  • Rafaqat, S.; Gluscevic, S.; Patoulias, D.; Sharif, S.; Klisic, A. The Association between Coagulation and Atrial Fibrillation. Biomedicines. 2024, 12, 274. DOI: 10.3390/biomedicines12020274.
  • Altaf, F.; Wu, S.; Kasim, V. Role of Fibrinolytic Enzymes in anti-Thrombosis Therapy. Front. Mol. Biosci. 2021, 8, 680397. DOI: 10.3389/fmolb.2021.680397.
  • Khasa, Y. P.; Adivitiya. The Evolution of Recombinant Thrombolytics: Current Status and Future Directions. Bioengineered. 2017;8(4):331–358. DOI: 10.1080/21655979.2016.1229718.
  • Venkata E, Raju N, Goli D, editors. Effect of Physiochemical Parameters on Fibrinolytic Protease Production by Solid State Fermentation. 2014.
  • Wang, S.-L.; Chao, C.-H.; Liang, T.-W.; Chen, C.-C. Purification and Characterization of Protease and Chitinase from Bacillus cereus TKU006 and Conversion of Marine Wastes by These Enzymes. Mar. Biotechnol. 2009, 11, 334–344. DOI: 10.1007/s10126-008-9149-y.
  • Bajaj, B. K.; Sharma, N.; Singh, S. Enhanced Production of Fibrinolytic Protease from Bacillus cereus NS-2 Using Cotton Seed Cake as Nitrogen Source. Biocatal. Agric. Biotechnol. 2013, 2, 204–209. DOI: 10.1016/j.bcab.2013.04.003.
  • Mukherjee, A. K.; Rai, S. K.; Thakur, R.; Chattopadhyay, P.; Kar, S. K. Bafibrinase: A Non-Toxic, Non-Hemorrhagic, Direct-Acting Fibrinolytic Serine Protease from Bacillus sp. strain as-S20-I Exhibits in Vivo Anticoagulant Activity and Thrombolytic Potency. Biochimie. 2012, 94, 1300–1308. DOI: 10.1016/j.biochi.2012.02.027.
  • Ashipala, O. K.; He, Q. Optimization of Fibrinolytic Enzyme Production by Bacillus subtilis DC-2 in Aqueous Two-Phase System (Poly-Ethylene Glycol 4000 and Sodium Sulfate). Bioresour. Technol. 2008, 99, 4112–4119. DOI: 10.1016/j.biortech.2007.09.029.
  • Mahajan, P. M.; Nayak, S.; Lele, S. S. Fibrinolytic Enzyme from Newly Isolated Marine Bacterium Bacillus subtilis ICTF-1: Media Optimization, Purification and Characterization. J. Biosci. Bioeng. 2012, 113, 307–314. DOI: 10.1016/j.jbiosc.2011.10.023.
  • Agrebi, R.; Haddar, A.; Hajji, M.; Frikha, F.; Manni, L.; Jellouli, K.; Nasri, M. Fibrinolytic Enzymes from a Newly Isolated Marine Bacterium Bacillus subtilis A26: Characterization and Statistical Media Optimization. Can. J. Microbiol. 2009, 55, 1049–1061. DOI: 10.1139/w09-057.
  • de Souza, F. A. S. D.; Sales, A. E.; Costa e Silva, P. E.; Bezerra, R. P.; de Medeiros e Silva, G. M.; de Araújo, J. M.; de Campos Takaki, G. M.; Porto, T. S.; Teixeira, J. A. C.; Porto, A. L. F.; et al. Optimization of Production, Biochemical Characterization and in Vitro Evaluation of the Therapeutic Potential of Fibrinolytic Enzymes from a New Bacillus amyloliquefaciens. Macromol. Res. 2016, 24, 587–595. DOI: 10.1007/s13233-016-4089-2.
  • Sun, Z.; Liu, P.; Cheng, G.; Zhang, B.; Dong, W.; Su, X.; Huang, Y.; Cui, Z.; Kong, Y. A Fibrinolytic Protease AfeE from Streptomyces sp. CC5, with Potent Thrombolytic Activity in a Mouse Model. Int. J. Biol. Macromol. 2016, 85, 346–354. DOI: 10.1016/j.ijbiomac.2015.12.059.
  • Mohanasrinivasan, V.; Yogesh, S.; Govindaraj, A.; Naine, S. J.; Devi, C. S. In Vitro Thrombolytic Potential of Actinoprotease from Marine Streptomyces violaceus VITYGM. Cardiovasc. Hematol. Agents Med. Chem. 2017, 14, 120–124. DOI: 10.2174/1871525715666161104112553.
  • Liu, X.; Kopparapu, N-k.; Li, Y.; Deng, Y.; Zheng, X. Biochemical Characterization of a Novel Fibrinolytic Enzyme from Cordyceps militaris. Int. J. Biol. Macromol. 2017, 94, 793–801. DOI: 10.1016/j.ijbiomac.2016.09.048.
  • Schilling, O.; Overall, C. M. Proteome-Derived, Database-Searchable Peptide Libraries for Identifying Protease Cleavage Sites. Nat. Biotechnol. 2008, 26, 685–694. DOI: 10.1038/nbt1408.
  • Schilling, O.; Huesgen, P. F.; Barré, O.; Auf Dem Keller, U.; Overall, C. M. Characterization of the Prime and Non-Prime Active Site Specificities of Proteases by Proteome-Derived Peptide Libraries and Tandem Mass Spectrometry. Nat. Protoc. 2011, 6, 111–120. DOI: 10.1038/nprot.2010.178.
  • O’Donoghue, A. J.; Eroy-Reveles, A. A.; Knudsen, G. M.; Ingram, J.; Zhou, M.; Statnekov, J. B.; Greninger, A. L.; Hostetter, D. R.; Qu, G.; Maltby, D. A.; et al. Global Identification of Peptidase Specificity by Multiplex Substrate Profiling. Nat. Methods. 2012, 9, 1095–1100. DOI: 10.1038/nmeth.2182.
  • Poreba, M.; Salvesen, G. S.; Drag, M. Synthesis of a HyCoSuL Peptide Substrate Library to Dissect Protease Substrate Specificity. Nat. Protoc. 2017, 12, 2189–2214. DOI: 10.1038/nprot.2017.091.
  • Zhou, J.; Li, S.; Leung, K. K.; O’Donovan, B.; Zou, J. Y.; DeRisi, J. L.; Wells, J. A. Deep Profiling of Protease Substrate Specificity Enabled by Dual Random and Scanned Human Proteome Substrate Phage Libraries. Proc. Natl. Acad. Sci. USA. 2020, 117, 25464–25475. DOI: 10.1073/pnas.2009279117.
  • Doucet, A.; Overall, C. M. Broad Coverage Identification of Multiple Proteolytic Cleavage Site Sequences in Complex High Molecular Weight Proteins Using Quantitative Proteomics as a Complement to Edman Sequencing. Mol. Cell. Proteom. 2011, 10, M110.003533. DOI: 10.1074/mcp.M110.003533.
  • Vidmar, R.; Vizovišek, M.; Turk, D.; Turk, B.; Fonović, M. Protease Cleavage Site Fingerprinting by Label-Free in-Gel Degradomics Reveals pH-Dependent Specificity Switch of Legumain. Embo J. 2017, 36, 2455–2465. DOI: 10.15252/embj.201796750.
  • Young, D.; Das, N.; Anowai, A.; Dufour, A. Matrix Metalloproteases as Influencers of the Cells’ Social Media. Int. J. Mol. Sci. 2019, 20, 3847. DOI: 10.3390/ijms20163847.
  • Eckhard, U.; Huesgen, P. F.; Schilling, O.; Bellac, C. L.; Butler, G. S.; Cox, J. H.; Dufour, A.; Goebeler, V.; Kappelhoff, R.; Keller, U. A. d.; et al. Active Site Specificity Profiling of the Matrix Metalloproteinase Family: Proteomic Identification of 4300 Cleavage Sites by Nine MMPs Explored with Structural and Synthetic Peptide Cleavage Analyses. Matrix Biol. 2016, 49, 37–60. DOI: 10.1016/j.matbio.2015.09.003.
  • Péterfi, O.; Boda, F.; Szabó, Z.; Ferencz, E.; Bába, L. Hypotensive Snake Venom Components—A Mini-Review. Molecules. 2019, 24, 2778. DOI: 10.3390/molecules24152778.
  • Zelanis, A.; Huesgen, P. F.; Oliveira, A. K.; Tashima, A. K.; Serrano, S. M. T.; Overall, C. M. Snake Venom Serine Proteinases Specificity Mapping by Proteomic Identification of Cleavage Sites. J. Proteomics. 2015, 113, 260–267. DOI: 10.1016/j.jprot.2014.10.002.
  • Eckhard, U.; Huesgen, P. F.; Brandstetter, H.; Overall, C. M. Proteomic Protease Specificity Profiling of Clostridial Collagenases Reveals Their Intrinsic Nature as Dedicated Degraders of Collagen. J. Proteomics. 2014, 100, 102–114. DOI: 10.1016/j.jprot.2013.10.004.
  • Vellard, M. The Enzyme as Drug: application of Enzymes as Pharmaceuticals. Curr. Opin. Biotechnol. 2003, 14, 444–450. DOI: 10.1016/s0958-1669(03)00092-2.
  • Baker, S. S.; Borowitz, D.; Duffy, L.; Fitzpatrick, L.; Gyamfi, J.; Baker, R. D. Pancreatic Enzyme Therapy and Clinical Outcomes in Patients with Cystic Fibrosis. J. Pediatr. 2005, 146, 189–193. DOI: 10.1016/j.jpeds.2004.09.003.
  • Medved, L.; Nieuwenhuizen, W. Molecular Mechanisms of Initiation of Fibrinolysis by Fibrin. Thromb. Haemost. 2003, 89, 409–419. DOI: 10.1055/s-0037-1613368.
  • Mosnier, L. O.; Bouma, B. N. Regulation of Fibrinolysis by Thrombin Activatable Fibrinolysis Inhibitor, an Unstable Carboxypeptidase B That Unites the Pathways of Coagulation and Fibrinolysis. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2445–2453. DOI: 10.1161/01.ATV.0000244680.14653.9a.
  • Dillon, P. W.; Jones, G. R.; Bagnall-Reeb, H. A.; Buckley, J. D.; Wiener, E. S.; Haase, G. M. Prophylactic Urokinase in the Management of Long-Term Venous Access Devices in Children: A Children’s Oncology Group Study. JCO. 2004, 22, 2718–2723. DOI: 10.1200/JCO.2004.07.019.
  • Rijken, D. C.; Lijnen, H. R. New Insights into the Molecular Mechanisms of the Fibrinolytic System. JTH. 2009, 7, 4–13. DOI: 10.1111/j.1538-7836.2008.03220.x.
  • Hoylaerts, M.; Rijken, D. C.; Lijnen, H. R.; Collen, D. Kinetics of the Activation of Plasminogen by Human Tissue Plasminogen Activator. Role of Fibrin. J. Biol. Chem. 1982, 257, 2912–2919. DOI: 10.1016/S0021-9258(19)81051-7.
  • Andreasen, P. A.; Egelund, R.; Petersen, H. H. The Plasminogen Activation System in Tumor Growth, Invasion, and Metastasis. CMLS. 2000, 57, 25–40.
  • Semba, C. P.; Sugimoto, K.; Razavi, M. K. Alteplase and Tenecteplase: Applications in the Peripheral Circulation. Tech. Vasc. Intervention. Radiol. 2001, 4, 99–106.
  • Howard, E. L.; Becker, K. C.; Rusconi, C. P.; Becker, R. C. Factor IXa Inhibitors as Novel Anticoagulants. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 722–727. DOI: 10.1161/01.ATV.0000259363.91070.f1.
  • Shapiro, A. D.; Chambost, H.; Ozelo, M. C.; Falk, A.; Ahlin, H.; Casiano, S.; Santagostino, E. Recombinant Factor IX Fc for Major Surgery in Hemophilia B: Factor IX Plasma Activity Levels and Effective Hemostasis. Res. Pract. Thromb. Haemost. 2023, 7, 102169. DOI: 10.1016/j.rpth.2023.102169.
  • Stafford, D. W. The Vitamin K Cycle. JTH. 2005, 3, 1873–1878. DOI: 10.1111/j.1538-7836.2005.01419.x.
  • Di Cera, E. Thrombin. Mol. Aspects Med. 2008, 29, 203–254. DOI: 10.1016/j.mam.2008.01.001.
  • Di Cera, E. Thrombin as Procoagulant and Anticoagulant. JTH. 2007, 5, 196–202. DOI: 10.1111/j.1538-7836.2007.02485.x.
  • Chapman, W. C.; Singla, N.; Genyk, Y.; McNeil, J. W.; Renkens, K. L.; Reynolds, T. C.; Murphy, A.; Weaver, F. A. A Phase 3, Randomized, Double-Blind Comparative Study of the Efficacy and Safety of Topical Recombinant Human Thrombin and Bovine Thrombin in Surgical Hemostasis. J. Am. Coll. Surg. 2007, 205, 256–265. DOI: 10.1016/j.jamcollsurg.2007.03.020.
  • Bowman, L. J.; Anderson, C. D.; Chapman, W. C. Topical Recombinant Human Thrombin in Surgical Hemostasis. Semin. Thromb. Hemost. 2010, 36, 477–484. DOI: 10.1055/s-0030-1255441.
  • Esmon, C. T. Inflammation and the Activated Protein C Anticoagulant Pathway. Semin. Thromb. Hemost. 2006, 32(Suppl 1), 49–60. DOI: 10.1055/s-2006-939554.
  • Chakraborty, R. K.; Burns, B. Systemic Inflammatory Response Syndrome. StatPearls. Treasure Island (FL) Ineligible Companies. Disclosure: Bracken Burns Declares No Relevant Financial Relationships with Ineligible Companies: StatPearls Publishing Copyright © 2024; StatPearls Publishing LLC.; 2024.
  • Gierula, M.; Ahnström, J. Anticoagulant Protein S—New Insights on Interactions and Functions. J. Thromb. Haemost. 2020, 18, 2801–2811. DOI: 10.1111/jth.15025.
  • Abraham, E.; Laterre, P.-F.; Garg, R.; Levy, H.; Talwar, D.; Trzaskoma, B. L.; François, B.; Guy, J. S.; Brückmann, M.; Rea-Neto, A.; et al. Drotrecogin Alfa (Activated) for Adults with Severe Sepsis and a Low Risk of Death. N Engl. J. Med. 2005, 353, 1332–1341. DOI: 10.1056/NEJMoa050935.
  • Nilsson, G.; Höjgård, S.; Berntorp, E. Treatment of the Critically Ill Patient with Protein C: Is It Worth the Cost? Thromb. Res. 2010, 125, 494–500. DOI: 10.1016/j.thromres.2009.09.008.
  • Culhane, S.; George, C.; Pearo, B.; Spoede, E. Malnutrition in Cystic Fibrosis. Nut. Clin. Prac. 2013, 28, 676–683. DOI: 10.1177/0884533613507086.
  • Littlewood, J. M.; Wolfe, S. P.; Conway, S. P. Diagnosis and Treatment of Intestinal Malabsorption in Cystic Fibrosis. Pediatr. Pulmonol. 2006, 41, 35–49. DOI: 10.1002/ppul.20286.
  • Kush, A.; Thakur, R.; Patil, S. D. S.; Paul, S. T.; Kakanur, M. Evaluation of Antimicrobial Action of Carie Care™ and Papacarie Duo™ on Aggregatibacter actinomycetemcomitans a Major Periodontal Pathogen Using Polymerase Chain Reaction. Contemp. Clin. Dent. 2015, 6, 534–538. DOI: 10.4103/0976-237X.169860.
  • Matsumoto, S.; Motta, L.; Alfaya, T.; Guedes, C.; Fernandes, K.; Bussadori, S. Assessment of Chemomechanical Removal of Carious Lesions Using Papacarie Duo ™: Randomized Longitudinal Clinical Trial. Indian J. Dent. Res. 2013, 24, 488–492. DOI: 10.4103/0970-9290.118393.
  • Kumar, M. P. S. The Emerging Role of Serratiopeptidase in Oral Surgery: Literature Update. Asian J. Pharm. Clin. Res. 2018, 11, 19. DOI: 10.22159/ajpcr.2018.v11i3.23471.
  • Abdul-Fattah, A. M.; Kalonia, D. S.; Pikal, M. J. The Challenge of Drying Method Selection for Protein Pharmaceuticals: Product Quality Implications. J. Pharm. Sci. 2007, 96, 1886–1916. DOI: 10.1002/jps.20842.
  • Dhiman, V. K.; Chauhan, V.; Kanwar, S. S.; Singh, D.; Pandey, H. Purification and Characterization of Actinidin from Actinidia Deliciosa and Its Utilization in Inactivation of α-Amylase. Bull. Natl. Res. Cent. 2021, 45, 213. DOI: 10.1186/s42269-021-00673-0.
  • Kardoust, M.; Salehi, H.; Taghipour, Z. The Effect of Kiwifruit Therapeutics in the Treatment of Diabetic Foot Ulcer. Int J Low Extrem Wounds. 2021, 20, 104–110.
  • Wanderley, L. F.; Soares, A.; Silva, C. R. E.; Figueiredo, I. M.; Ferreira, A.; Perales, J.; et al. A Cysteine Protease from the Latex of Ficus Benjamina Has in Vitro Anthelmintic Activity against Haemonchus Contortus. Revista Brasileira de Parasitologia Veterinaria [Brazilian J. Vet. Parasitol.]; Orgao Oficial Do Colegio Brasileiro de Parasitologia Veterinaria. 2018, 27, 473–480.
  • Stafford, C. T. The Clinician’s View of Sinusitis. Otolaryngol. Head Neck Surg. 1990, 103, 870–875. DOI: 10.1177/01945998901030S506.
  • Braun, J. M.; Schneider, B.; Beuth, H. J. Therapeutic Use, Efficiency and Safety of the Proteolytic Pineapple Enzyme Bromelain-POS in Children with Acute Sinusitis in Germany. In Vivo. 2005, 19, 417–421.
  • Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C. M.; French, C.; Machado, F. R.; Mcintyre, L.; Ostermann, M.; Prescott, H. C.; et al. Surviving Sepsis Campaign: international Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med. 2021, 47, 1181–1247. DOI: 10.1007/s00134-021-06506-y.
  • Taghvaei, S.; Sabouni, F.; Minuchehr, Z. Identification of Novel anti-Cancer Agents, Applying in Silico Method for SENP1 Protease Inhibition. J Biomol Struct Dyn. 2022, 40, 6228–6242.
  • Coelho, C.; Gallo, G.; Campos, C. B.; Hardy, L.; Würtele, M. Biochemical Screening for SARS-CoV-2 Main Protease Inhibitors. PLOS One. 2020, 15, e0240079. DOI: 10.1371/journal.pone.0240079.
  • Sun, T.; Jiang, D.; Zhang, L.; Su, Q.; Mao, W.; Jiang, C. Expression Profile of Cathepsins Indicates the Potential of Cathepsins B and D as Prognostic Factors in Breast Cancer Patients. Oncol. Lett. 2016, 11, 575–583. DOI: 10.3892/ol.2015.3960.
  • Beaujouin, M.; Liaudet-Coopman, E. Cathepsin D Overexpressed by Cancer Cells Can Enhance Apoptosis-Dependent Chemo-Sensitivity Independently of Its Catalytic Activity. In Hormonal Carcinogenesis V; Li, J. J., Li, S. A., Mohla, S., Rochefort, H., Maudelonde, T., Eds.; Springer New York: New York, NY; 2008; pp 453–461.
  • Masson, O.; Prébois, C.; Derocq, D.; Meulle, A.; Dray, C.; Daviaud, D.; Quilliot, D.; Valet, P.; Muller, C.; Liaudet-Coopman, E.; et al. Cathepsin-D, a Key Protease in Breast Cancer, is up-Regulated in Obese Mouse and Human Adipose Tissue, and Controls Adipogenesis. PLOS One. 2011, 6, e16452. DOI: 10.1371/journal.pone.0016452.
  • Kabel, A. M. Tumor Markers of Breast Cancer: New Prospectives. J. Oncol. Sci. 2017, 3, 5–11. DOI: 10.1016/j.jons.2017.01.001.
  • Turk, V.; Kos, J.; Turk, B. Cysteine Cathepsins (Proteases)—On the Main Stage of Cancer? Cancer Cell. 2004, 5, 409–410. DOI: 10.1016/s1535-6108(04)00117-5.
  • Hemalatha, T.; UmaMaheswari, T.; Krithiga, G.; Sankaranarayanan, P.; Puvanakrishnan, R. Enzymes in Clinical Medicine: An Overview. Indian J. Exp. Biol. 2013, 51, 777–788.
  • Saghatelian, A.; Guckian, K. M.; Thayer, D. A.; Ghadiri, M. R. DNA Detection and Signal Amplification via an Engineered Allosteric Enzyme. J. Am. Chem. Soc. 2003, 125, 344–345. DOI: 10.1021/ja027885u.
  • Choi, J.-H. Proteolytic Biosensors with Functional Nanomaterials: Current Approaches and Future Challenges. Biosensors. 2023, 13, 171. DOI: 10.3390/bios13020171.
  • Renault, K.; Debieu, S.; Richard, J.-A.; Romieu, A. Deeper Insight into Protease-Sensitive “Covalent-Assembly” Fluorescent Probes for Practical Biosensing Applications. Org. Biomol. Chem. 2019, 17, 8918–8932. DOI: 10.1039/c9ob01773a.
  • Zhang, H.; Yang, L.; Zhu, X.; Wang, Y.; Yang, H.; Wang, Z. A Rapid and Ultrasensitive Thrombin Biosensor Based on a Rationally Designed Trifunctional Protein. Adv. Healthc. Mater. 2020, 9, e2000364. DOI: 10.1002/adhm.202000364.
  • Selvin, P. R. The Renaissance of Fluorescence Resonance Energy Transfer. Nat. Struct. Biol. 2000, 7, 730–734. DOI: 10.1038/78948.
  • Zhang, Y.; Chen, X.; Roozbahani, G. M.; Guan, X. Graphene Oxide-Based Biosensing Platform for Rapid and Sensitive Detection of HIV-1 Protease. Anal. Bioanal. Chem. 2018, 410, 6177–6185. DOI: 10.1007/s00216-018-1224-2.
  • Brown, A. S.; Ackerley, D. F.; Calcott, M. J. High-Throughput Screening for Inhibitors of the SARS-CoV-2 Protease Using a FRET-Biosensor. Molecules. 2020, 25 4666. DOI: 10.3390/molecules25204666.
  • Zhang, Y.; Chen, X.; Yuan, S.; Wang, L.; Guan, X. Joint Entropy-Assisted Graphene Oxide-Based Multiplexing Biosensing Platform for Simultaneous Detection of Multiple Proteases. Anal. Chem. 2020, 92, 15042–15049. DOI: 10.1021/acs.analchem.0c03007.
  • Li, F.; Chen, Y.; Lin, R.; Miao, C.; Ye, J.; Cai, Q.; Huang, Z.; Zheng, Y.; Lin, X.; Zheng, Z.; et al. Integration of Fluorescent Polydopamine Nanoparticles on Protamine for Simple and Sensitive Trypsin Assay. Anal. Chim. Acta. 2021, 1148, 338201. DOI: 10.1016/j.aca.2021.338201.
  • Xu, S.; Zhang, F.; Xu, L.; Liu, X.; Ma, P.; Sun, Y.; Wang, X.; Song, D. A Fluorescence Resonance Energy Transfer Biosensor Based on Carbon Dots and Gold Nanoparticles for the Detection of Trypsin. Sens. Actuators, B. 2018, 273, 1015–1021. DOI: 10.1016/j.snb.2018.07.023.
  • Bui, H.; Brown, C. W.; Buckhout-White, S.; Díaz, S. A.; Stewart, M. H.; Susumu, K.; Oh, E.; Ancona, M. G.; Goldman, E. R.; Medintz, I. L.; et al. Transducing Protease Activity into DNA Output for Developing Smart Bionanosensors. Small. 2019, 15, e1805384. DOI: 10.1002/smll.201805384.
  • Geddes, C. D.; Lakowicz, J. R. Editorial: Metal-Enhanced Fluorescence. J. Fluorescence. 2002, 12, 121–129. DOI: 10.1023/A:1016875709579.
  • Choi, J.-H.; Choi, J.-W. Metal-Enhanced Fluorescence by Bifunctional Au Nanoparticles for Highly Sensitive and Simple Detection of Proteolytic Enzyme. Nano Lett. 2020, 20, 7100–7107. DOI: 10.1021/acs.nanolett.0c02343.
  • Liu, L.; Deng, D.; Wang, Y.; Song, K.; Shang, Z.; Wang, Q.; Xia, N.; Zhang, B. A Colorimetric Strategy for Assay of Protease Activity Based on Gold Nanoparticle Growth Controlled by Ascorbic Acid and Cu(II)-Coordinated Peptide. Sens. Actuators, B. 2018, 266, 246–254. DOI: 10.1016/j.snb.2018.03.116.
  • Creyer, M. N.; Jin, Z.; Retout, M.; Yim, W.; Zhou, J.; Jokerst, J. V. Gold–Silver Core–Shell Nanoparticle Crosslinking Mediated by Protease Activity for Colorimetric Enzyme Detection. Langmuir. 2022, 38, 14200–14207. DOI: 10.1021/acs.langmuir.2c02219.
  • Liu, F.; Chen, R.; Song, W.; Li, L.; Lei, C.; Nie, Z. Modular Combination of Proteolysis-Responsive Transcription and Spherical Nucleic Acids for Smartphone-Based Colorimetric Detection of Protease Biomarkers. Anal. Chem. 2021, 93, 3517–3525. DOI: 10.1021/acs.analchem.0c04894.
  • Feng, Y.; Liu, G.; La, M.; Liu, L. Colorimetric and Electrochemical Methods for the Detection of SARS-CoV-2 Main Protease by Peptide-Triggered Assembly of Gold Nanoparticles. Molecules. 2022, 27, 615. DOI: 10.3390/molecules27030615.
  • Ling, Z.; Xu, F.; Edwards, J. V.; Prevost, N. T.; Nam, S.; Condon, B. D.; French, A. D. Nanocellulose as a Colorimetric Biosensor for Effective and Facile Detection of Human Neutrophil Elastase. Carbohydr. Polym. 2019, 216, 360–368. DOI: 10.1016/j.carbpol.2019.04.027.
  • Zhang, K.; Fan, Z.; Ding, Y.; Li, J.; Li, H. Thiol-Sensitive Probe Enables Dynamic Electrochemical Assembly of Serum Protein for Detecting SARS-Cov-2 Marker Protease in Clinical Samples. Biosens. Bioelectron. 2021, 194, 113579. DOI: 10.1016/j.bios.2021.113579.
  • Shi, K.; Cao, L.; Liu, F.; Xie, S.; Wang, S.; Huang, Y.; Lei, C.; Nie, Z. Amplified and Label-Free Electrochemical Detection of a Protease Biomarker by Integrating Proteolysis-Triggered Transcription. Biosens. Bioelectron. 2021, 190, 113372. DOI: 10.1016/j.bios.2021.113372.
  • Eissa, S.; Zourob, M. A Dual Electrochemical/Colorimetric Magnetic Nanoparticle/Peptide-Based Platform for the Detection of Staphylococcus aureus. Analyst 2020, 145, 4606–4614. DOI: 10.1039/d0an00673d.
  • Weihs, F.; Peh, A.; Dacres, H. A Red-Shifted Bioluminescence Resonance Energy Transfer (BRET) Biosensing System for Rapid Measurement of Plasmin Activity in Human Plasma. Anal. Chim. Acta. 2020, 1102, 99–108. DOI: 10.1016/j.aca.2019.12.044.
  • Weihs, F.; Gel, M.; Wang, J.; Anderson, A.; Trowell, S.; Dacres, H. Development and Characterisation of a Compact Device for Rapid Real-Time-on-Chip Detection of Thrombin Activity in Human Serum Using Bioluminescence Resonance Energy Transfer (BRET). Biosens. Bioelectron. 2020, 158, 112162. DOI: 10.1016/j.bios.2020.112162.
  • Wei, C.; Sun, R.; Jiang, Y.; Guo, X.; Ying, Y.; Wen, Y.; Yang, H.; Wu, Y. Protease-Protection Strategy Combined with the SERS Tags for Detection of O-GlcNAc Transferase Activity. Sens. Actuators, B. 2021, 345, 130410. DOI: 10.1016/j.snb.2021.130410.
  • Adem, S.; Jain, S.; Sveiven, M.; Zhou, X.; O’Donoghue, A. J.; Hall, D. A. Giant Magnetoresistive Biosensors for Real-Time Quantitative Detection of Protease Activity. Sci. Rep. 2020, 10, 7941. DOI: 10.1038/s41598-020-62910-2.
  • Guerreiro, M. R.; Freitas, D. F.; Alves, P. M.; Coroadinha, A. S. Detection and Quantification of Label-Free Infectious Adenovirus Using a Switch-On Cell-Based Fluorescent Biosensor. ACS Sens. 2019, 4, 1654–1661. DOI: 10.1021/acssensors.9b00489.
  • Guerreiro, M. R.; Fernandes, A. R.; Coroadinha, A. S. Evaluation of Structurally Distorted Split GFP Fluorescent Sensors for Cell-Based Detection of Viral Proteolytic Activity. Sensors. 2020, 21, 24. DOI: 10.3390/s21010024.
  • Dey-Rao, R.; Smith, G. R.; Timilsina, U.; Falls, Z.; Samudrala, R.; Stavrou, S.; Melendy, T. A Fluorescence-Based, Gain-of-Signal, Live Cell System to Evaluate SARS-CoV-2 Main Protease Inhibition. Antiviral Res. 2021, 195, 105183. DOI: 10.1016/j.antiviral.2021.105183.
  • Gerber, P. P.; Duncan, L. M.; Greenwood, E. J. D.; Marelli, S.; Naamati, A.; Teixeira-Silva, A.; Crozier, T. W. M.; Gabaev, I.; Zhan, J. R.; Mulroney, T. E.; et al. A Protease-Activatable Luminescent Biosensor and Reporter Cell Line for Authentic SARS-CoV-2 Infection. PLOS Pathog. 2022, 18, e1010265. DOI: 10.1371/journal.ppat.1010265.
  • Luo, X.; Zhao, J.; Xie, X.; Liu, F.; Zeng, P.; Lei, C.; Nie, Z. Proteolysis-Responsive Rolling Circle Transcription Assay Enabling Femtomolar Sensitivity Detection of a Target Protease Biomarker. Anal. Chem. 2020, 92, 16314–16321. DOI: 10.1021/acs.analchem.0c04427.
  • Braun, A.; Farber, M. J.; Klase, Z. A.; Berget, P. B.; Myers, K. A. A Cell Surface Display Fluorescent Biosensor for Measuring MMP14 Activity in Real-Time. Sci. Rep. 2018, 8, 5916. DOI: 10.1038/s41598-018-24080-0.
  • Xu, J.; Fang, L.; Shi, M.; Huang, Y.; Yao, L.; Zhao, S.; Zhang, L.; Liang, H. A Peptide-Based Four-Color Fluorescent Polydopamine Nanoprobe for Multiplexed Sensing and Imaging of Proteases in Living Cells. Chem. Commun. 2019, 55, 1651–1654. DOI: 10.1039/C8CC09359H.
  • Peyressatre, M.; Laure, A.; Pellerano, M.; Boukhaddaoui, H.; Soussi, I.; Morris, M. C. Fluorescent Biosensor of CDK5 Kinase Activity in Glioblastoma Cell Extracts and Living Cells. Biotechnol. J. 2020, 15, e1900474. DOI: 10.1002/biot.201900474.
  • Hassanzadeh-Barforoushi, A.; Warkiani, M. E.; Gallego-Ortega, D.; Liu, G.; Barber, T. Capillary-Assisted Microfluidic Biosensing Platform Captures Single Cell Secretion Dynamics in Nanoliter Compartments. Biosens. Bioelectron. 2020, 155, 112113. DOI: 10.1016/j.bios.2020.112113.
  • Zhong, Q.; Zhang, K.; Huang, X.; Lu, Y.; Zhao, J.; He, Y.; Liu, B. In Situ Ratiometric SERS Imaging of Intracellular Protease Activity for Subtype Discrimination of Human Breast Cancer. Biosens. Bioelectron. 2022, 207, 114194. DOI: 10.1016/j.bios.2022.114194.
  • Cheng, Y.; Clark, A. E.; Zhou, J.; He, T.; Li, Y.; Borum, R. M.; Creyer, M. N.; Xu, M.; Jin, Z.; Zhou, J.; et al. Protease-Responsive Peptide-Conjugated Mitochondrial-Targeting AIEgens for Selective Imaging and Inhibition of SARS-CoV-2-Infected Cells. ACS Nano. 2022, 16, 12305–12317. DOI: 10.1021/acsnano.2c03219.
  • Yim, J. J.; Singh, S. P.; Xia, A.; Kashfi-Sadabad, R.; Tholen, M.; Huland, D. M.; Zarabanda, D.; Cao, Z.; Solis-Pazmino, P.; Bogyo, M.; et al. Short-Wave Infrared Fluorescence Chemical Sensor for Detection of Otitis Media. ACS Sens. 2020, 5, 3411–3419. DOI: 10.1021/acssensors.0c01272.
  • Moore, C.; Cheng, Y.; Tjokro, N.; Zhang, B.; Kerr, M.; Hayati, M.; Chang, K. C. J.; Shah, N.; Chen, C.; Jokerst, J. V.; et al. A Photoacoustic-Fluorescent Imaging Probe for Proteolytic Gingipains Expressed by Porphyromonas gingivalis. Angew. Chem. Int. Ed. 2022, 61, e202201843. DOI: 10.1002/anie.202201843.
  • Xiang, Z.; Zhao, J.; Yi, D.; Di, Z.; Li, L. Peptide Nucleic Acid (PNA)-Guided Peptide Engineering of an Aptamer Sensor for Protease-Triggered Molecular Imaging. Angew. Chem. Int. Ed. 2021, 60, 22659–22663. DOI: 10.1002/anie.202106639.
  • Kang, S. M.; Cho, H.; Jeon, D.; Park, S. H.; Shin, D.-S.; Heo, C. Y. A Matrix Metalloproteinase Sensing Biosensor for the Evaluation of Chronic Wounds. BioChip J. 2019, 13, 323–332. DOI: 10.1007/s13206-019-3403-4.
  • Metkar, S. K.; Girigoswami, A.; Murugesan, R.; Girigoswami, K. Lumbrokinase for Degradation and Reduction of Amyloid Fibrils Associated with Amyloidosis. J. Appl. Biomed. 2017, 15, 96–104. DOI: 10.1016/j.jab.2017.01.003.
  • Nakamura, T.; Yamagata, Y.; Ichishima, E. Nucleotide Sequence of the Subtilisin NAT Gene, aprN, of Bacillus subtilis (Natto). Biosci. Biotechnol. Biochem. 1992, 56, 1869–1871. DOI: 10.1271/bbb.56.1869.
  • Banerjee, A.; Chisti, Y.; Banerjee, U. Streptokinase—a Clinically Useful Thrombolytic Agent. Biotechnol. Adv. 2004, 22, 287–307. DOI: 10.1016/j.biotechadv.2003.09.004.
  • Li, X.; Wang, X.; Xiong, S.; Zhang, J.; Cai, L.; Yang, Y. Expression and Purification of Recombinant Nattokinase in Spodoptera frugiperda Cells. Biotechnol. Lett. 2007, 29, 1459–1464. DOI: 10.1007/s10529-007-9426-2.
  • Cho, Y.-H.; Song, J. Y.; Kim, K. M.; Kim, M. K.; Lee, I. Y.; Kim, S. B.; Kim, H. S.; Han, N. S.; Lee, B. H.; Kim, B. S.; et al. Production of Nattokinase by Batch and Fed-Batch Culture of Bacillus subtilis. N Biotechnol. 2010, 27, 341–346. DOI: 10.1016/j.nbt.2010.06.003.
  • Gupte, V.; Luthra, U. Analytical Techniques for Serratiopeptidase: A Review. J. Pharm. Anal. 2017, 7, 203–207. DOI: 10.1016/j.jpha.2017.03.005.
  • Jadhav, S. B.; Shah, N.; Rathi, A.; Rathi, V.; Rathi, A. Serratiopeptidase: Insights into the Therapeutic Applications. Biotechnol. Rep. 2020, 28, e00544. DOI: 10.1016/j.btre.2020.e00544.
  • Metkar, S. K.; Girigoswami, A.; Vijayashree, R.; Girigoswami, K. Attenuation of Subcutaneous Insulin Induced Amyloid Mass in Vivo Using Lumbrokinase and Serratiopeptidase. Int. J. Biol. Macromol. 2020, 163, 128–134. DOI: 10.1016/j.ijbiomac.2020.06.256.
  • Kotb, E. Activity Assessment of Microbial Fibrinolytic Enzymes. Appl. Microbiol. Biotechnol. 2013, 97, 6647–6665. DOI: 10.1007/s00253-013-5052-1.
  • Bhagat, S.; Agarwal, M.; Roy, V. Serratiopeptidase: A Systematic Review of the Existing Evidence. Int. J.Surg. 2013, 11, 209–217. DOI: 10.1016/j.ijsu.2013.01.010.
  • Tiwari, M. The Role of Serratiopeptidase in the Resolution of Inflammation. Asian J. Pharm. Sci. 2017, 12, 209–215. DOI: 10.1016/j.ajps.2017.01.003.
  • Chappi D, M.; Suresh, K. V.; Patil, M. R.; Desai, R.; Tauro, D. P.; Bharani K N S, S.; Parkar, M. I.; Babaji, H. V. Comparison of Clinical Efficacy of Methylprednisolone and Serratiopeptidase for Reduction of Postoperative Sequelae after Lower Third Molar Surgery. J. Clin. Exp. Dent. 2015, 7, e197–e202. DOI: 10.4317/jced.51868.
  • Nakamura, S.; Hashimoto, Y.; Mikami, M.; Yamanaka, E.; Soma, T.; Hino, M.; Azuma, A.; Kudoh, S. Effect of the Proteolytic Enzyme Serrapeptase in Patients with Chronic Airway Disease. Respirology. 2003, 8, 316–320. DOI: 10.1046/j.1440-1843.2003.00482.x.
  • Jadav, S. P.; Patel, N. H.; Shah, T. G.; Gajera, M. V.; Trivedi, H. R.; Shah, B. K. Comparison of Antiinflammatory Activity of Serratiopeptidase and Diclofenac in Albino Rats. J. Pharmacol. Pharmacother. 2010, 1, 116–117. DOI: 10.4103/0976-500X.72362.
  • Metkar, S. K.; Girigoswami, A.; Murugesan, R.; Girigoswami, K. In Vitro and in Vivo Insulin Amyloid Degradation Mediated by Serratiopeptidase. Mater. Sci. Eng. C. 2017, 70, 728–735. DOI: 10.1016/j.msec.2016.09.049.
  • Sannino, G.; Gigola, P.; Puttini, M.; Pera, F.; Passariello, C. Combination Therapy Including Serratiopeptidase Improves Outcomes of Mechanical-Antibiotic Treatment of Periimplantitis. Int. J. Immunopathol. Pharmacol. 2013, 26, 825–831. DOI: 10.1177/039463201302600332.
  • Ishihara, Y.; Kitamura, S.; Takaku, F. Experimental Studies on Distribution of Cefotiam, a New Beta-Lactam Antibiotic, in the Lung and Trachea of Rabbits. II. Combined Effects with Serratiopeptidase. Jpn. J. Antibiot. 1983, 36, 2665–2670.
  • Nirale, N.; Menon, M. D. Topical Formulations of Serratiopeptidase: Development and Pharmacodynamic Evaluation. Indian J. Pharm. Sci. 2010, 72, 65–71. DOI: 10.4103/0250-474X.62246.
  • Al-Khateeb, T. H.; Nusair, Y. Effect of the Proteolytic Enzyme Serrapeptase on Swelling, Pain and Trismus after Surgical Extraction of Mandibular Third Molars. Int. J. Oral Maxillofac. Surg. 2008, 37, 264–268. DOI: 10.1016/j.ijom.2007.11.011.
  • Tamimi, Z.; Al Habashneh, R.; Hamad, I.; Al-Ghazawi, M.; Roqa’a, A. A.; Kharashgeh, H. Efficacy of Serratiopeptidase after Impacted Third Molar Surgery: A Randomized Controlled Clinical Trial. BMC Oral Health. 2021, 21, 91. DOI: 10.1186/s12903-021-01451-0.
  • Rouhani, M.; Valizadeh, V.; Molasalehi, S.; Norouzian, D. Production and Expression Optimization of Heterologous Serratiopeptidase. Iran. J. Public Health. 2020, 49, 931–939. DOI: 10.18502/ijph.v49i5.3211.
  • Srivastava, V.; Mishra, S.; Chaudhuri, T. K. Enhanced Production of Recombinant Serratiopeptidase in Escherichia coli and Its Characterization as a Potential Biosimilar to Native Biotherapeutic Counterpart. Microb. Cell Fact. 2019, 18, 215. DOI: 10.1186/s12934-019-1267-x.
  • Salamone, P. R.; Wodzinski, R. J. Production, Purification and Characterization of a 50-kDa Extracellular Metalloprotease from Serratia marcescens. Appl. Microbiol. Biotechnol. 1997, 48, 317–324. DOI: 10.1007/s002530051056.
  • Klasen, H. J. A Review on the Nonoperative Removal of Necrotic Tissue from Burn Wounds. Burns. 2000, 26, 207–222. DOI: 10.1016/s0305-4179(99)00117-5.
  • Sheets, A. R.; Demidova-Rice, T. N.; Shi, L.; Ronfard, V.; Grover, K. V.; Herman, I. M. Identification and Characterization of Novel Matrix-Derived Bioactive Peptides: A Role for Collagenase from Santyl® Ointment in Post-Debridement Wound Healing? PLOS One. 2016, 11, e0159598. DOI: 10.1371/journal.pone.0159598.
  • Pham, C. H.; Collier, Z. J.; Fang, M.; Howell, A.; Gillenwater, T. J. The Role of Collagenase Ointment in Acute Burns: A Systematic Review and Meta-Analysis. J. Wound Care. 2019, 28, S9–S15. DOI: 10.12968/jowc.2019.28.Sup2.S9.
  • Bassetto, F.; Maschio, N.; Abatangelo, G.; Zavan, B.; Scarpa, C.; Vindigni, V. Collagenase from Vibrio alginolyticus Cultures: experimental Study and Clinical Perspectives. Surg. Innov. 2016, 23, 557–562. DOI: 10.1177/1553350616660630.
  • Li, X.; Zhu, Y.; Guan, Y.; Bai, W.; Jia, S.; Sun, Y. Screening, Identification and Fermentation Optimization of a Collagenase-Producing Strain and Purification of the Collagenase. Wei Sheng Wu Xue Bao. 2016, 56, 1034–1043.
  • Hartig-Andreasen, C.; Schroll, L.; Lange, J. Clostridium histolyticum as First-Line Treatment of Dupuytren’s Disease. Dan. Med. J. 2019, 66, A5527.
  • Hoy, S. M. Collagenase clostridium histolyticum: A Review in Peyronie’s Disease. Clin. Drug Investig. 2020, 40, 83–92. DOI: 10.1007/s40261-019-00867-5.
  • Parravano, M.; Tedeschi, M.; Manca, D.; Costanzo, E.; Di Renzo, A.; Giorno, P.; et al. Effects of Macuprev(®) Supplementation in Age-Related Macular Degeneration: A Double-Blind Randomized Morpho-Functional Study along 6 Months of Follow-Up. Adv Ther. 2019, 36, 2493–2505.
  • Pavan, R.; Jain, S.; Shraddha, K. A. Biotechnology Research International. J. Ethnopharmacol. 2015, 159, 62–83.
  • Colletti, A.; Li, S.; Marengo, M.; Adinolfi, S.; Cravotto, G. Recent Advances and Insights into Bromelain Processing, Pharmacokinetics and Therapeutic Uses. Appl. Sci. 2021, 11, 8428. DOI: 10.3390/app11188428.
  • Pavan, R., Jain, S., Kumar, A., Shraddha. Properties and Therapeutic Application of Bromelain: A Review. Biotechnol. Res. Int. 2012, 2012, 976203. DOI: 10.1155/2012/976203.
  • dos Anjos, M. M.; da Silva, A. A.; de Pascoli, I. C.; Mikcha, J. M. G.; Machinski, M.; Peralta, R. M.; de Abreu Filho, B. A. Antibacterial Activity of Papain and Bromelain on Alicyclobacillus Spp. Int. J. Food Microbiol. 2016, 216, 121–126. DOI: 10.1016/j.ijfoodmicro.2015.10.007.
  • López, R. E. D.; Gonçalves, R. Therapeutic Proteases from Plants: biopharmaceuticals with Multiple Applications. JABB. 2019, 6, 101–109. DOI: 10.15406/jabb.2019.06.00180.
  • David Troncoso, F.; Alberto Sánchez, D.; Luján Ferreira, M. Production of Plant Proteases and New Biotechnological Applications: An Updated Review. ChemistryOpen. 2022, 11, e202200017. DOI: 10.1002/open.202200017.
  • Wandersman, C. Secretion, Processing and Activation of Bacterial Extracellular Proteases. Mol. Microbiol. 1989, 3, 1825–1831. DOI: 10.1111/j.1365-2958.1989.tb00169.x.
  • Wright, G. D. Something Old, Something New: revisiting Natural Products in Antibiotic Drug Discovery. Can. J. Microbiol. 2014, 60, 147–154. DOI: 10.1139/cjm-2014-0063.
  • Brown, E. D.; Wright, G. D. Antibacterial Drug Discovery in the Resistance Era. Nature. 2016, 529, 336–343. DOI: 10.1038/nature17042.
  • Frees, D.; Qazi, S. N.; Hill, P. J.; Ingmer, H. Alternative Roles of ClpX and ClpP in Staphylococcus aureus Stress Tolerance and Virulence. Mol. Microbiol. 2003, 48, 1565–1578. DOI: 10.1046/j.1365-2958.2003.03524.x.
  • Viala, J.; Mazodier, P. The ATPase ClpX is Conditionally Involved in the Morphological Differentiation of Streptomyces lividans. Mol. Genet. Genomics. 2003, 268, 563–569. DOI: 10.1007/s00438-002-0783-1.
  • Maurizi, M. R.; Clark, W. P.; Katayama, Y.; Rudikoff, S.; Pumphrey, J.; Bowers, B.; Gottesman, S. Sequence and Structure of Clp P, the Proteolytic Component of the ATP-Dependent Clp Protease of Escherichia coli. J. Biol. Chem. 1990, 265, 12536–12545. DOI: 10.1016/S0021-9258(19)38378-4.
  • Frees, D.; Chastanet, A.; Qazi, S.; Sørensen, K.; Hill, P.; Msadek, T.; Ingmer, H. Clp ATPases Are Required for Stress Tolerance, Intracellular Replication and Biofilm Formation in Staphylococcus aureus. Mol. Microbiol. 2004, 54, 1445–1462. DOI: 10.1111/j.1365-2958.2004.04368.x.
  • Frees, D.; Gerth, U.; Ingmer, H. Clp Chaperones and Proteases Are Central in Stress Survival, Virulence and Antibiotic Resistance of Staphylococcus aureus. IJMM. 2014, 304, 142–149. DOI: 10.1016/j.ijmm.2013.11.009.
  • Gaillot, O.; Bregenholt, S.; Jaubert, F.; Di Santo, J. P.; Berche, P. Stress-Induced ClpP Serine Protease of Listeria monocytogenes is Essential for Induction of Listeriolysin O-Dependent Protective Immunity. Infect. Immun. 2001, 69, 4938–4943. DOI: 10.1128/IAI.69.8.4938-4943.2001.
  • Song, Y.; Rubio, A.; Jayaswal, R. K.; Silverman, J. A.; Wilkinson, B. J. Additional Routes to Staphylococcus aureus Daptomycin Resistance as Revealed by Comparative Genome Sequencing, Transcriptional Profiling, and Phenotypic Studies. PLOS One. 2013, 8, e58469. DOI: 10.1371/journal.pone.0058469.
  • Raju, R. M.; Unnikrishnan, M.; Rubin, D. H. F.; Krishnamoorthy, V.; Kandror, O.; Akopian, T. N.; Goldberg, A. L.; Rubin, E. J. Mycobacterium tuberculosis ClpP1 and ClpP2 Function Together in Protein Degradation and Are Required for Viability in Vitro and during Infection. PLOS Pathog. 2012, 8, e1002511. DOI: 10.1371/journal.ppat.1002511.
  • Ollinger, J.; O’Malley, T.; Kesicki, E. A.; Odingo, J.; Parish, T. Validation of the Essential ClpP Protease in Mycobacterium tuberculosis as a Novel Drug Target. J. Bacteriol. 2012, 194, 663–668. DOI: 10.1128/JB.06142-11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.