54
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Antimicrobial peptides (AMPs) from microalgae as an alternative to conventional antibiotics in aquaculture

, , &

References

  • Yang, Y.; Song, W.; Lin, H.; Wang, W.; Du, L.; Xing, W. Antibiotics and Antibiotic Resistance Genes in Global Lakes: A Review and Meta-Analysis. Environ. Int. 2018, 116, 60–73. DOI: 10.1016/j.envint.2018.04.011.
  • Wimley, W. C. Application of Synthetic Molecular Evolution to the Discovery of Antimicrobial Peptides. Adv. Exp. Med. Biol. 2019, 1117, 241–255.
  • Zanetti, M. Cathelicidins, Multifunctional Peptides of the Innate Immunity. J. Leukoc Biol. 2004, 75, 39–48. DOI: 10.1189/jlb.0403147.
  • Vanhoye, D.; Bruston, F.; Nicolas, P.; Amiche, M. Antimicrobial Peptides from Hylid and Ranin Frogs Originated from a 150-Million-Year-Old Ancestral Precursor with a Conserved Signal Peptide but a Hypermutable Antimicrobial Domain. Europe J. Biochem. 2003, 270, 2068–2081. DOI: 10.1046/j.143-1033.2003.03584.x.
  • Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D. H.; He, Q. The Antimicrobial Peptides and Their Potential Clinical Applications. Am. J. Transl. Res. 2019, 11, 3919–3931.
  • Hancock, R. E. Cationic Peptides: Effectors in Innate Immunity and Novel Antimicrobials. Lancet Infect Dis. 2001, 1, 156–164.
  • Wang, K.; Chu, J.; Hu, Z.; Qin, S.; Cui, Y. Using Bait Microalga as an Oral Delivery Vehicle of Antimicrobial Peptide for Controlling Vibrio Infection in Mussels. Fish Shellfish Immunol. 2023, 136, 108713. DOI: 10.1016/j.fsi.2023.108713.
  • Hancock, R. E. W.; Diamond, G. The Role of Cationic Antimicrobial Peptides in Innate Host Defences. Trends Microbiol. 2000, 8, 402–410. DOI: 10.1016/s0966-842x(00)01823-0.
  • Zasloff, M. Antimicrobial Peptides of Multicellular Organism. Nature. 2002, 415, 389–395. DOI: 10.1038/415389a.
  • Dubos, R. J. Studies on a Bactericidal Agent Extracted from a Soil Bacillus: I. Preparation of the Agent, its Activity in Vitro. J. Exp. Med. 1939, 70, 1–10. DOI: 10.1084/jem.70.1.1.
  • Bulet, P.; Hetru, C.; Dimarcq, J. L.; Hoffmann, D. Antimicrobial Peptides in Insects; Structure and Function. Dev. Comp. Immunol. 1999, 23, 329–344. DOI: 10.1016/s0145-305x(99)00015-4.
  • Bulet, P.; Stöcklin, R.; Menin, L. Anti-Microbial Peptides: From Invertebrates to Vertebrates. Immunol. Rev. 2004, 198, 169–184. DOI: 10.1111/j.0105-2896.2004.0124.x.
  • Muñoz Camargo, C. Búsqueda De Péptidos Antimicrobianos Nuevos En Secreciones De Piel De Ranas. Tesis de Doctorado. Universidad de los Andes, Bogotá, Colombia, 2017.
  • Al Musaimi, O.; Al Shaer, D.; de la Torre, B. G.; Albericio, F. FDA Peptide Harvest. Pharmaceuticals., 2018, 11, 42–57. DOI: 10.3390/ph110200422018.
  • de la Fuente-Núñez, C.; Silva, O. N.; Lu, T. K.; Franco, O. L. Antimicrobial Peptides: Role in Human Disease and Potential as Immunotherapies. Pharmacol. Ther. 2017, 178, 132–140. DOI: 10.1016/j.pharmthera.2017.04.002.
  • Rojas, V.; Rivas, L.; Cárdenas, C. &.; Guzmán, F. Cyanobacteria and Eukaryotic Microalgae as Emerging Sources Ofantibacterial Peptides. Molecules 2020, 25, 5804. DOI: 10.3390/molecules25245804.
  • Butcher, R. W. An Introductory account of the Smaller Algae of British Coastal Waters. Part I, Fishery Invest. London Ser. 1959, IV, 1–74.
  • Molina-Cárdenas, C. A.; Sánchez-Saavedra, M.; Lizárraga-Partida, M. L. Inhibition of Pathogenicvibrio by the Microalgae Isochrysis Galbana. Journal of Appliedphycology. 2014, 26, 2347–2355. DOI: 10.1007/s10811-014-0270-1.
  • Barkia, I.; Saari, N.; & Manning, S. R. Microalgae for High-Value Products towards Human Health and Nutrition. Marine Drugs 2019, 17, 304. DOI: 10.3390/md17050304.
  • Suetsuna, K.; Chen, J. R. Identification of Antihypertensive Peptides from Peptic Digest of Two Microalgae, Chlorella Vulgaris and Spirulina Platensis. Mar. Biotechnol. (NY) 2001, 3, 305–309. DOI: 10.1007/s10126-001-0012-7.
  • Suárez, E. R.; Kralovec, J. A.; Grindley, T. B. Isolation of Phosphorylated Polysaccharides from Algae: The Immunostimulatory Principle of Chlorella Pyrenoidosa. Carbohydr. Res. 2010, 345, 1190–1204. DOI: 10.1016/j.carres.2010.04.004.
  • Al-Saif, S. S. A-l.; Abdel-Raouf, N.; El-Wazanani, H. A.; Aref, I. A. Antibacterial Substances from Marine Algae Isolated from Jeddah Coast of Red Sea, Saudi Arabia. Saudi J. Biol. Sci. 2014, 21, 57–64. DOI: 10.1016/j.sjbs.2013.06.001.
  • Narayana, J. L.; Chen, J.-Y. Antimicrobial Peptides: Possible Anti-Infective Agents. Peptides. 2015, 72, 88–94. DOI: 10.1016/j.peptides.2015.05.012.
  • Guilhelmelli, F.; Vilela, N.; Albuquerque, P.; Derengowski, L. D. S.; Silva-Pereira, I.; Kyaw, C. M. Antibiotic Development Challenges: The Various Mechanisms of Action of Antimicrobial Peptides and of Bacterial Resistance. Front. Microbiol. 2013, 4, 1–12. DOI: 10.3389/fmicb.2013.00353.
  • Brogden, K. A. Antimicrobial Peptides: pore Formers or Metabolic Inhibitors in Bacteria?. Nat. Rev. Microbiol. 2005, 3, 238–250. DOI: 10.1038/nrmicro1098.
  • Marsh, E. N. G.; Buer, B. C.; Ramamoorthy, A. Fluorine-a New Element in the Design of Membrane-Active Peptides. Mol. Biosyst. 2009, 5, 1143–1147. DOI: 10.1039/B909864J.
  • Hancock, R. E. W.; Chapple, D. S. Minireview Peptide Antibiotics. Antimicrob. Agents Chemother. 1999, 43, 1317–1323.
  • Süssmuth, R. D.; Mainz, A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew. Chem. Int. Ed. 2017, 56, 3770–3821. DOI: 10.1002/anie.201609079.
  • Mitchell, C. A.; Shi, C.; Aldrich, C. C.; Gulick, A. M. Structure of PA1221, a Nonribosomal Peptide Synthetase Containing Adenylation and Peptidyl Carrier Protein Domains. Biochemistry. 2012, 51, 3252–3263. DOI: 10.1021/bi300112e.
  • Mercer, C.; Burkart, M. D. The Ubiquitous Carrier Protein-a Window to Metabolite Biosynthesis. Nat. Prod. Rep. 2007, 24, 750–773. DOI: 10.1039/b603921a.
  • Schwarzer, D.; Finking, R.; Marahiel, M. A. Nonribosomal Peptides: From Genes to Products. Nat. Prod. Rep. 2003, 20, 275–287. DOI: 10.1039/b111145k.
  • Sivonen, K.; Leikoski, N.; Fewer, D. P.; Jokela, J. Cyanobactins-Ribosomal Cyclic Peptides Produced by Cyanobacteria. Appl. Microbiol. Biotechnol. 2010, 86, 1213–1225. DOI: 10.1007/s00253-010-2482-x.
  • Arnison, P. G.; Bibb, M. J.; Bierbaum, G.; Bowers, A. A.; Bugni, T. S.; Bulaj, G.; Camarero, J. A.; Campopiano, D. J.; Challis, G. L.; Clardy, J.; et al. Ribosomally Synthesized and Post-Translationally Modified Peptide Natural Products: overview and Recommendations for a Universal Nomenclature. Nat. Prod. Rep. 2013, 30, 108–160. DOI: 10.1039/c2np20085f.
  • Rivas, L.; Rojas, V. Cyanobacterial Peptides as a Tour De Force in the Chemical Space of Antiparasitic Agents. Arch. Biochem. Biophys. 2019, 664, 24–39. DOI: 10.1016/j.abb.2019.01.030.
  • Martínez-Alcalá, I.; Soto, J.; Lahora, A. Antibióticos Como Contaminantes Emergentes. Riesgo Ecotoxicológico y Control En Aguas Residuales y Depuradas. Ecosistemas. 2020, 29, 2070–2070.
  • Wang, H.; Ran, R.; Yu, H.; Yu, Z.; Hu, Y.; Zheng, H.; Wang, D.; Yang, F.; Liu, R.; Liu, J.; et al. Identification and Characterization of Antimicrobial Peptides from Skin of Amolops Ricketti (Anura: Ranidae). Peptides 2012, 33, 27–34. DOI: 10.1016/j.peptides.2011.10.030.
  • Hancock, R. E. W.; Sahl, H.-G. Antimicrobial and Host-Defense Peptides as New anti-Infective Therapeutic Strategies. Nat. Biotechnol. 2006, 24, 1551–1557. DOI: 10.1038/nbt1267.
  • Mahlapuu, M.; Hakansson, J.; Ringstad, L.; Bjorn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell. Infect. Microbiol. 2016, 6, 194.
  • Bobone, S.; Stella, L. Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. Adv. Exp. Med. Biol. 2019, 1117, 175–214. DOI: 10.1007/978-981-13-3588-4_11.
  • Rodríguez, A.; Villegas, E.; Satake, H.; Possani, L. D.; Corzo, G. Amino Acid Substitutions in an Alpha-Helical Antimicrobial Arachnid Peptide Affect Its Chemical Properties and Biological Activity towards Pathogenic Bacteria but Improves Its Therapeutic Index. Amino Acids. 2011, 40, 61–68. DOI: 10.1007/s00726-009-0449-y.
  • Beckloff, N.; Laube, D.; Castro, T.; Furgang, D.; Park, S.; Perlin, D.; Clements, D.; Tang, H.; Scott, R. W.; Tew, G. N.; Diamond, G. Activity of an Antimicrobial Peptide Mimetic against Planktonic and Biofilm Cultures of Oral Pathogens. Antimicrob. Agents Chemother. 2007, 51, 4125–4132.
  • Kelly, S. M.; Price, N. C. The Use of Circular Dichroism in the Investigation of Protein Structure and Function. Curr. Protein Pept. Sci. 2000, 1, 349–384. DOI: 10.2174/1389203003381315.
  • Gopal, R.; Park, J. S.; Seo, C. H.; Park, Y. Applications of Circular Dichroism for Structural Analysis of Gelatin and Antimicrobial Peptides. Int. J. Off. Mol. Sci. 2012, 13, 3229–3244.
  • Shin, S. Y.; Kang, J. H.; Lee, D. G.; Jang, S. Y.; Seo, M. Y.; et al. Influences of Hinge Region of a Synthetic Antimicrobial Peptide, Cecropin A(1–13)-Melittin(1–13) Hybrid on Antibiotic Activity. Bullet. Korean Chem. Soc. 1999, 20, 1078–1084.
  • Han, Y.; Zhang, M.; Lai, R.; Zhang, Z. Chemical Modifications to Increase the Therapeutic Potential of Antimicrobial Peptides. Peptides. 2021, 146, 170666. DOI: 10.1016/j.peptides.2021.170666.
  • Moore, R. E.; Corbett, T. H.; Patterson, G. M. L.; Valeriote, F. A. The Search for New Antitumor Drugs from Blue-Green Algae. Curr. Pharmacol. Des. 1996, 2, 317–330.
  • Swain, S. S.; Paidesetty, S. K.; Padhy, R. N. Antibacterial, Antifungal and Antimycobacterial Compounds from Cyanobacteria. Biomed. Pharmacother. 2017, 90, 760–-776. DOI: 10.1016/j.biopha.2017.04.030.
  • Pratt, R.; Daniels, T. C.; Eiler, J. J.; Gunnison, J. B.; Kumler, W. D.; Oneto, J. F.; Strait, L. A.; Spoehr, H. A.; Hardin, G. J.; Milner, H. W.; et al. Chlorellin, an Antibacterial Substance from Chlorella. Science. 1944, 99, 351–352. DOI: 10.1126/science.99.2574.351.
  • Sedighi, M.; Jalili, H.; Darvish, M.; Sadeghi, S.; Ranaei-Siadat, S. O. Enzymatic Hydrolysis of Microalgae Proteins Using Serine Proteases: A Study to Characterize Kinetic Parameters. Food Chem. 2019, 284, 334–339. DOI: 10.1016/j.foodchem.2019.01.111.
  • Tejano, L. A.; Peralta, J. P.; Yap, E. E. S.; Panjaitan, F. C. A.; Chang, Y. W. Prediction of Bioactive Peptides from Chlorella Sorokiniana Proteins Using Proteomic Techniques in Combination with Bioinformatics Analyses. Int, J. Mol. Sci. 2019, 20, 1786.
  • Pergament, I.; Carmeli, S.; Schizotrin, A. A Novel Antimicrobial Cyclic Peptide from a Cyanobacterium. Tetrahedron Lett. 1994, 35, 8473–8476.
  • Shaima, A. F.; Mohd Yasin, N. H.; Ibrahim, N.; Takriff, M. S.; Gunasekaran, D.; Ismaeel, M. Y. Y. Unveiling Antimicrobial Activity of Microalgae Chlorella Sorokiniana (UKM2), Chlorella Sp. (UKM8) AND Scenedesmus Sp. (UKM9). Saudi J. Biol. Sci. 2022, 29, 1043–1052. DOI: 10.1016/j.sjbs.2021.09.069.
  • Guzmán, F.; Wong, G.; Román, T.; Alvárez, C.; Schmitt, P.; Rojas. V. Identification of Antimicrobial Peptides from the Microalgae Tetraselmis Suecica (Kylin) Butcherand Bactericidal Activity Improvement. Marine Drugs 2019, 17, 453. DOI: 10.3390/md17080453.
  • Hancock, R. E. Peptide Antibiotics. Lancet. 1997, 349, 418–422. DOI: 10.1016/S0140-6736(97)80051-7.
  • Arif, J. M.; Farooqui, A.; Siddiqui, M. H.; Al-Karrawi, M.; Al-Hazmi, A.; Al-Sagair, O. A. Novel Bioactive Peptides from Cyanobacteria. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier Science: Amsterdam, The Netherlands, 2012; pp 111–161.
  • Xue, Y.; Zhao, P.; Quan, C.; Zhao, Z.; Gao, W.; Li, J.; Zu, X.; Fu, D.; Feng, S.; Bai, X.; et al. Cyanobacteria-Derived Peptide Antibiotics Discovered since 2000. Peptides. 2018, 107, 17–24. DOI: 10.1016/j.peptides.2018.08.002.
  • Antunes, J.; Pereira, S.; Ribeiro, T.; Plowman, J. E.; Thomas, A.; Clerens, S.; Campos, A.; Vasconcelos, V.; Almeida, J. R. A Multi-Bioassay Integrated Approach to Assess the Antifouling Potential of the Cyanobacterial Metabolites Portoamides. Maritime Drugs. 2019, 17, 111.
  • Barboza, G.; Gorlach-Lira, K.; Sassi, C.; Sassi, R. Microcystins Production and Antibacterial Activity of Cyanobacterial Strains of Synechocystis, Synechococcus and Romeria Isolated from Water and Coral Reef Organisms of Brazilian Coast. Revista De Biologia Tropical. 2017, 65, 890.
  • Simmons, T. L.; Engene, N.; Ureña, L. D.; Romero, L. I.; Ortega-Barría, E.; Gerwick, L.; Gerwick, W. H. Viridamides A and B, Lipodepsipeptides with Antiprotozoal Activity from the Marine Cyanobacterium Oscillatoria Nigro-Viridis. J. Nat. Prod. 2008, 71, 1544–1550. DOI: 10.1021/np800110e.
  • Montalvo, G. E. B.; Thomaz-Soccol, V.; Vandenberghe, L. P. S.; Carvalho, J. C.; Faulds, C. B.; Bertrand, E.; Prado, M. R. M.; Bonatto, S. J. R.; Soccol, C. R. Arthrospira Maxima OF15 Biomass Cultivation at Laboratory and Pilot Scale from Sugarcane Vinasse for Potential Biological New Peptides Production. Bioresour. Technol. 2019, 273, 103–113. DOI: 10.1016/j.biortech.2018.10.081.
  • Volk, R. B.; Furkert, F. H. Antialgal, Antibacterial and Antifungal Activity of Two Metabolites Produced and Excreted by Cyanobacteria during Growth. Microbiol. Res, 2006, 161, 180–186.
  • Sasso, S.; Pohnert, G.; Lohr, M.; Mittag, M.; Hertweck, C. Microalgae in the Postgenomic Era: A Blooming Reservoir for New Natural Products. FEMS Microbiol. Rev. 2012, 36, 761–785.
  • Baiden, N.; Gandini, C.; Goddard, P.; Sayanova, O. Heterologous Expression of Antimicrobial Peptides S-Thanatin and Bovine Lactoferricin in the Marine Diatom Phaeodactylum Tricornutum Enhances Native Antimicrobial Activity against Gram-Negative Bacteria. Algal Res. 2023, 69, 102927. DOI: 10.1016/j.algal.2022.102927.
  • Shi, Q.; Chen, C.; Zhang, W.; Wu, P.; Sun, M.; Wu, H.; Wu, H.; Fu, P.; Fan, J. Transgenic Eukaryotic Microalgae as Green Factories: providing New Ideas for the Production of Biologically Active Substances. J. Appl. Phycol. 2021, 33, 705–728. DOI: 10.1007/s10811-020-02350-7.
  • Kato, K.; Marui, T.; Kasai, S.; Shinmyo, A. Artificial Control of Transgene Expression in Chlamydomonas reinhardtii Chloroplast Using the Lac Regulation System from Escherichia coli. J. Biosci. Bioeng. 2007, 104, 207–213. DOI: 10.1263/jbb.104.207.
  • Dove, A. Uncorking the Biomanufacturing Bottleneck. Nat. Biotechnol. 2002, 20, 777–779. DOI: 10.1038/nbt0802-777.
  • Burja, A. M.; Banaigs, B.; Abou-Mansour, E.; Grant Burgess, J.; Wright, P. C. Marine Cyanobacteria—a Prolific Source of Natural Products. Tetrahedron. 2001, 57, 9347–9377. DOI: 10.1016/S0040-4020(01)00931-0.
  • Suess, B. Engineered Riboswitches Control Gene Expression by Small Molecules. Biochem. Soc. Trans. 2005, 33, 474–476. DOI: 10.1042/BST0330474.
  • Winkler, W. C.; Breaker, R. R. Regulation of Bacterial Gene Expression by Riboswitches. Annu. Rev. Microbiol. 2005, 59, 487–517. DOI: 10.1146/annurev.micro.59.030804.121336.
  • Mudimu, O.; Rybalka, N.; Bauersachs, T.; Born, J.; Friedl, T.; Schulz, R. Biotechnological Screening of Microalgal and Cyanobacterial Strains for Biogas Production and Antibacterial and Antifungal Effects. Metabolites. 2014, 4, 373–393. DOI: 10.3390/metabo4020373.
  • Bhagavathy, S.; Sumathi, P. Jancy Sherene Bell, I. Green Algae Chlorococcum Humicola—A New Source of Bioactive Compounds with Antimicrobial Activity. Asian Pac. J. Trop. Biomed. 2011, 1, S1–S7.
  • Walter, C. S.; Mahesh, R. Antibacterial and Antifungal Activities of Some Marine Diatoms in Culture. Indian J. Mar. Sci. 2000, 29, 238–242.
  • Herrero, M.; Ibáñez, E.; Cifuentes, A.; Reglero, G.; Santoyo, S. Dunaliella Salina Microalga Pressurized Liquid Extracts as Potential Antimicrobials. J. Food Prot. 2006, 69, 2471–2477. DOI: 10.4315/0362-028X-69.10.2471.
  • Najdenski, H. M.; Gigova, L. G.; Iliev, I. I.; Pilarski, P. S.; Lukavský, J.; Tsvetkova, I. V.; Ninova, M. S.; Kussovski, V. K. Antibacterial and Antifungal Activities of Selected Microalgae and Cyanobacteria. Int. J. Food Sci. Technol. 2013, 48, 1533–1540.
  • Jørgensen, E. G. Antibiotic Substances from Cells and Culture Solutions of Unicellular Algae with Special Reference to Some Chlorophyll Derivatives. Physiol. Plant. 1962, 15, 530–545. DOI: 10.1111/j.1399-3054.1962.tb08056.x.
  • Santoyo, S.; Rodríguez-Meizoso, I.; Cifuentes, A.; Jaime, L.; García-Blairsy Reina, G.; Señorans, F. J.; Ibáñez, E. Green Processes Based on the Extraction with Pressurized Fluids to Obtain Potent Antimicrobials from Haematococcus Pluvialis Microalgae. LWT—Food Sci. Technol. 2009, 42, 1213–1218.
  • Ohta, S.; Shiomi, Y.; Kawashima, A.; Aozasa, O.; Nakao, T.; Nagate, T.; Kitamura, K.; Miyata, H. Antibiotic Effect of Linolenic Acid from Chlorococcum Strain HS-101 and Dunaliella Primolecta on Methicillin-Resistant Staphylococcus aureus. J. Appl. Phycol. 1995, 7, 121–127. DOI: 10.1007/BF00693057.
  • Sun, C. Q.; O’Connor, C. J.; Roberton, A. M. Antibacterial Actions of Fatty Acids and Monoglycerides against Helicobacter pylori. FEMS Immunol. Med. Microbiol. 2003, 36, 9–17. DOI: 10.1016/S0928-8244(03)00008-7.
  • Austin, B.; Day, J. G. Inhibition of Prawn Pathogenic Vibrio Spp. by a Commercial Spray-Dried Preparation of Tetraselmis suecica. Aquaculture. 1990, 90, 389–392. DOI: 10.1016/0044-8486(90)90261-K.
  • Austin, B.; Baudet, E.; Stobie, M. Inhibition of Bacterial Fish Pathogens by Tetraselmis suecica. J. Fish Dis. 1992, 15, 55–61. DOI: 10.1111/j.1365-2761.1992.tb00636.x.
  • Paria, A.; Vinay, T. N.; Gupta, S. K.; Choudhury, T. G.; Sarkar, B. Antimicrobial Peptides: A Promising Future Alternative to Antibiotics in Aquaculture. World Aquacult. 2018, 49, 67–69.
  • Regunathan, C.; Wesley, S. G. Control of Vibrio Spp. in Shrimp Hatcheries Using the Green Algae Tetraselmis suecica. Asian Fish. Sci. 2004, 17, 147–158.
  • Rashidian, G.; Moghaddam, M. M.; Mirnejad, R.; Azad, Z. M. Supplementation of Zebrafish (Danio rerio) Diet Using a Short Antimicrobial Peptide: Evaluation of Growth Performance, Immunomodulatory Function, Antioxidant Activity, and Disease Resistance. Fish Shellfish Immunol. 2021, 119, 42–50. DOI: 10.1016/j.fsi.2021.09.035.
  • Lahav, D.; Eyngor, M.; Hurvitz, A.; Ghittino, C.; Lublin, A.; Eldar, A. Streptococcus iniae Type II Infections in Rainbow Trout Oncorhynchus mykiss. Dis. Aquat. Organ. 2004, 62, 177–180. DOI: 10.3354/dao062177.
  • Kvitt, H.; Colorni, A. Strain Variation and Geographic Endemism in Streptococcus iniae. Dis. Aquat. Organ. 2004, 61, 67–73. DOI: 10.3354/dao061067.
  • Li, S. S.; Tsai, H. J. Transgenic Microalgae as a Non-Antibiotic Bactericide Producer to Defend against Bacterial Pathogen Infection in the Fish Digestive Tract. Fish Shellfish Immunol. 2009, 26, 316–325. DOI: 10.1016/j.fsi.2008.07.004.
  • Kokou, F.; Makridis, P.; Kentouri, M.; Divanach, P. Antibacterial Activity in Microalgae Cultures. Aquac. Res. 2012, 43, 1520–1527. DOI: 10.1111/j.1365-2109.2011.02955.x.
  • Makridis, P.; Costa, R. A.; Dinis, M. T. Microbial Conditions and Antimicrobial Activity in Cultures of Two Microalgae Species, Tetraselmis Chuii and Chlorella Minutissima, and Effect on Bacterial Load of Enriched Artemia Metanauplii. Aquaculture. 2006, 255, 76–81. DOI: 10.1016/j.aquaculture.2005.12.010.
  • Kwon, K. C.; Lamb, A.; Fox, D.; Jegathese, S. J. P. An Evaluation of Microalgae as a Recombinant Protein Oral Delivery Platform for Fish Using Green Fluorescent Protein (GFP). Fish Shellfish Immunol. 2019, 87, 414–420. DOI: 10.1016/j.fsi.2019.01.038.
  • Kiataramgul, A.; Maneenin, S.; Purton, S.; Areechon, N.; Hirono, I.; Brocklehurst, T. W.; Unajak, S. An Oral Delivery System for Controlling White Spot Syndrome Virus Infection in Shrimp Using Transgenic Microalgae. Aquaculture. 2020, 521, 735022. DOI: 10.1016/j.aquaculture.2020.735022.
  • Ishida, K.; Matsuda, H.; Murakami, M.; Yamaguchi, K. Kawaguchipeptin B, an Antibacterial Cyclic Undecapeptide from the Cyanobacterium Microcystis aeruginosa. J. Nat. Prod. 1997, 60, 724–726. DOI: 10.1021/np970146k.
  • Gademann, K.; Bethuel, Y.; Locher, H. H.; Hubschwerlen, C. Biomimetic Total Synthesis and Antimicrobial Evaluation of Anachelin H. J. Org. Chem. 2007, 72, 8361–8370.
  • Nagatsu, A.; Kajitani, H.; Sakakibara, J.; Muscoride, A. A New Oxazole Peptide Alkaloid from Freshwater Cyanobacterium Nostoc Muscorum. Tetrahedron Lett. 1995, 36, 4097–4100.
  • Lafarga, T. Cultured Microalgae and Compounds Derived Thereof for Food Applications: strain Selection and Cultivation, Drying, and Processing Strategies. Food Rev. Int. 2020, 36, 559–583. DOI: 10.1080/87559129.2019.1655572.
  • Leão, P. N.; Pereira, A. R.; Liu, W. T.; Ng, J.; Pevzner, P. A.; Dorrestein, P. C.; König, G. M.; Vasconcelos, V. M.; Gerwick, W. H. Synergistic Allelochemicals from a Freshwater Cyanobacterium. Proc. Natl. Acad. Sci. USA. 2010, 107, 11183–11188.
  • Cao, S.; Xue, J.; Chen, X.; An, X.; Zhang, X. Magnetic Nanoparticles Mediate the Transformation of Antimicrobial Peptides HeM into Chlorella Ellipsoidea. J. Appl. Phycol. 2020, 32, 3913–3921. DOI: 10.1007/s10811-020-02101-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.