0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Advanced temperature control in ethanol fermentation using a PSO-PID controller with split-range control strategy

, &

References

  • Renewable Fuels Association, 2023. Homegrown for the Homeland – Ethanol Industry Outlook 2023. https://ethanolrfa.org/resources/annual-industry-outlook.
  • Renewable Fuels Association. 2012. Accelerating Industry Innovation – 2012 Ethanol Industry Outlook. http://www.ethanolrfa.org/pages/ annual-industry-outlook.
  • Renewable Fuels Association. 2005. Homegrown for the Homeland – Ethanol Industry Outlook 2005. https://ethanolrfa.org/resources/reports (accessed March 23, 2024).
  • IEA. 2020. Transport Biofuels – Renewables. https://www.iea.org/reports/renewables-2020/transport-biofuels.
  • Ethaib, S.; Omar, R.; Siti Mazlina, M. K.; Dayang Radiah, A. B.; Zubaidi, S. L. Toward Sustainable Processes of Pretreatment Technologies of Lignocellulosic Biomass for Enzymatic Production of Biofuels and Chemicals: A Review. BioRes. 2020, 15, 10063–10088. DOI: 10.15376/biores.15.4.Ethaib.
  • Saravanan, A.; Senthil Kumar, P.; Jeevanantham, S.; Karishma, S.; Vo, D.-V. N. Recent Advances and Sustainable Development of Biofuels Production from Lignocellulosic Biomass. Bioresour. Technol. 2022, 344, 126203. DOI: 10.1016/j.biortech.2021.126203.
  • Jatoi, A. S.; Abbasi, S. A.; Hashmi, Z.; et al. Recent Trends and Future Perspectives of Lignocellulose Biomass for Biofuel Production: A Comprehensive Review. Biomass Convers. Biorefinery 2021, 13, 3.
  • Arisutha, S.; Baredar, P.; Deshpande, D. M.; Suresh, S. Effects of Thermo-Chemical Pre-Treatment on Bamboo for Biogas Production. Indian Chem. Eng. 2016, 58, 79–88. DOI: 10.1080/00194506.2014.997812.
  • Awasthi, M. K.; Sindhu, R.; Sirohi, R.; Kumar, V.; Ahluwalia, V.; Binod, P.; Juneja, A.; Kumar, D.; Yan, B.; Sarsaiya, S.; et al. Agricultural Waste Biorefinery Development towards Circular Bioeconomy. Renew. Sustain. Energy Rev. 2022, 158, 112122. DOI: 10.1016/j.rser.2022.112122.
  • Hiloidhari, M.; Bhuyan, N.; Gogoi, N.; et al. Agroindustry Wastes: biofuels and Biomaterials Feedstocks for Sustainable Rural Development. In Refin Biomass Residues Sustain Energy Bioprod., Kumar, R. P., Gnansounou, E., Raman, J. K., Gurunathan, B., Eds.; Elsevier: Cambridge; 2020; p. 357–388.
  • Dutta, S.; Ghosh, S.; Manna, D.; Chowdhury, R. Energy and Environmental Performance of a near-Zero-Effluent Rice Straw to Butanol Production Plant. Indian Chem. Eng. 2021, 63, 139–151. DOI: 10.1080/00194506.2020.1831406.
  • Kaur, H.; Keshri, R. Production of Ethanol from Sugarcane Molasses. IJRASB. 2020, 7, 93–97. DOI: 10.31033/ijrasb.7.5.13.
  • Beigbeder, J.-B.; de Medeiros Dantas, J. M.; Lavoie, J.-M. Optimization of Yeast, Sugar and Nutrient Concentrations for High Ethanol Production Rate Using Industrial Sugar Beet Molasses and Response Surface Methodology. Fermentation 2021, 7, 86. DOI: 10.3390/fermentation7020086.
  • Cruz, M. L.; de Resende, M. M.; Ribeiro, E. J. Improvement of Ethanol Production in Fed-Batch Fermentation Using a Mixture of Sugarcane Juice and Molasse under Very High-Gravity Conditions. Bioprocess Biosyst. Eng. 2021, 44, 617–625. DOI: 10.1007/s00449-020-02462-x.
  • Sharma, D.; Saini, A.; Sharma, D.; et al. Cellulosic Ethanol Feedstock: Diversity and Potential. In Lignocellul Ethanol Prod Biorefinery Perspect Sustain Valorization Waste, Sharma, D., Saini, A., Eds.; Springer: Singapore, 2020; pp. 23–63.
  • Sharma, D.; Saini, A. Lignocellulosic Ethanol Production from a Biorefinery Perspective. Springer: Singapore; 2020.
  • Raj, T.; Chandrasekhar, K.; Naresh Kumar, A.; Rajesh Banu, J.; Yoon, J.-J.; Kant Bhatia, S.; Yang, Y.-H.; Varjani, S.; Kim, S.-H. Recent Advances in Commercial Biorefineries for Lignocellulosic Ethanol Production: Current Status, Challenges and Future Perspectives. Bioresour. Technol. 2022, 344, 126292. DOI: 10.1016/j.biortech.2021.126292.
  • Yao, S.; Xiong, L.; Chen, X.; Li, H.; Chen, X. Comparative Study of Lipid Production from Cellulosic Ethanol Fermentation Wastewaters by Four Oleaginous Yeasts. Prep. Biochem. Biotechnol. 2021, 51, 669–677. DOI: 10.1080/10826068.2020.1852416.
  • Li, J.; Zhao, R.; Xu, Y.; Wu, X.; Bean, S. R.; Wang, D. Fuel Ethanol Production from Starchy Grain and Other Crops: An Overview on Feedstocks, Affecting Factors, and Technical Advances. Renew. Energy 2022, 188, 223–239. DOI: 10.1016/j.renene.2022.02.038.
  • Tse, T. J.; Wiens, D. J.; Chicilo, F.; Purdy, S. K.; Reaney, M. J. T. Value-Added Products from Ethanol Fermentation—A Review. Fermentation 2021, 7, 267. DOI: 10.3390/fermentation7040267.
  • Gohel, V.; Ranganathan, K.; Duan, G. Single Temperature Liquefaction Process at Different Operating pHs to Improve Ethanol Production from Indian Rice and Corn Feedstock. Prep. Biochem. Biotechnol. 2017, 47, 342–348. DOI: 10.1080/10826068.2016.1244687.
  • Turhan, O.; Isci, A.; Mert, B.; Sakiyan, O.; Donmez, S. Optimization of Ethanol Production From Microfluidized Wheat Straw by Response Surface Methodology. Prep. Biochem. Biotechnol. 2015, 45, 785–795. DOI: 10.1080/10826068.2014.958164.
  • Ngwenya, T. T.; Shukla, P.; Baboolal, N.; et al. An Industrial Perspective of Factors Affecting Molasses Fermentation by Saccharomyces cerevisiae. J. Brew. Distill. 2012, 3, 23–28.
  • Xu, Y.; Isom, L.; Hanna, M. A. Adding Value to Carbon Dioxide from Ethanol Fermentations. Bioresour. Technol. 2010, 101, 3311–3319. DOI: 10.1016/j.biortech.2010.01.006.
  • Amillastre, E.; Aceves-Lara, C.-A.; Uribelarrea, J.-L.; Alfenore, S.; Guillouet, S. E. Dynamic Model of Temperature Impact on Cell Viability and Major Product Formation during Fed-Batch and Continuous Ethanolic Fermentation in Saccharomyces cerevisiae. Bioresour. Technol. 2012, 117, 242–250. DOI: 10.1016/j.biortech.2012.04.013.
  • Han, M.; Kim, Y.; Kim, Y.; Chung, B.; Choi, G.-W. Bioethanol Production from Optimized Pretreatment of Cassava Stem. Korean J. Chem. Eng. 2011, 28, 119–125. DOI: 10.1007/s11814-010-0330-4.
  • Le Man, H.; Behera, S.; Park, H. Optimization of Operational Parameters for Ethanol Production from Korean Food Waste Leachate. Int. J. Environ. Sci. Technol. 2010, 7, 157–164. DOI: 10.1007/BF03326127.
  • Ławryńczuk, M. Modelling and Nonlinear Predictive Control of a Yeast Fermentation Biochemical Reactor Using Neural Networks. Chem. Eng. J. 2008, 145, 290–307. DOI: 10.1016/j.cej.2008.08.005.
  • Sagüés, C.; García-Bacaicoa, P.; Serrano, S. Automatic Control of Biomass Gasifiers Using Fuzzy Inference Systems. Bioresour. Technol. 2007, 98, 845–855. DOI: 10.1016/j.biortech.2006.03.004.
  • Wakabayashi, C.; Embiruçu, M.; Fontes, C.; Kalid, R. Fuzzy Control of a Nylon Polymerization Semi-Batch Reactor. Fuzzy Sets Syst. 2009, 160, 537–553. DOI: 10.1016/j.fss.2008.08.009.
  • Lopéz-Peréz, P. A.; Rodriguez-Mata, A. E.; Hernández-González, O.; Amabilis-Sosa, L. E.; Baray-Arana, R.; Leon-Borges, J. Design of a Robust Sliding Mode Controller for Bioreactor Cultures in Overflow Metabolism via an Interdisciplinary Approach. Open Chem. 2022, 20, 120–129. DOI: 10.1515/chem-2021-0098.
  • López Pérez, P. A.; Aguilar-López, R. Dynamic Nonlinear Feedback for Temperature Control of Continuous Stirred Reactor with Complex Behavior. J. Appl. Res. Technol. 2009, 7, 202–217.
  • Aguilar-López, R.; Alvarado-Santos, E.; Thalasso, F.; López-Pérez, P. A. Monitoring Ethanol Fermentation in Real Time by a Robust State Observer for Uncertainties. Chem. Eng. Technol. 2024, 47, 779–790. DOI: 10.1002/ceat.202300324.
  • Alvarado-Santos, E.; Mata-Machuca, J. L.; López-Pérez, P. A.; Garrido-Moctezuma, R. A.; Pérez-Guevara, F.; Aguilar-López, R. Comparative Analysis of a Family of Sliding Mode Observers under Real-Time Conditions for the Monitoring in the Bioethanol Production. Fermentation 2022, 8, 446. DOI: 10.3390/fermentation8090446.
  • López-Pérez, P. A.; Cuevas-Ortiz, F. A.; Gómez-Acata, R. V.; Aguilar-López, R. Improving Bioethanol Production via Nonlinear Controller with Noisy Measurements. Chem. Eng. Commun. 2015, 202, 1438–1445. DOI: 10.1080/00986445.2014.956737.
  • Fonseca, R. R.; Schmitz, J. E.; Fileti, A. M. F.; da Silva, F. V. A Fuzzy–Split Range Control System Applied to a Fermentation Process. Bioresour. Technol. 2013, 142, 475–482. DOI: 10.1016/j.biortech.2013.05.083.
  • Lersbamrungsuk, V.; Srinophakun, T.; Narasimhan, S.; Skogestad, S. Control Structure Design for Optimal Operation of Heat Exchanger Networks. AIChE J. 2008, 54, 150–162. DOI: 10.1002/aic.11366.
  • Xu, Z.; Chen, L.; Jiang, Y. Comparison between Frequency Splitting Approach and Fuzzy Logic Control as an Energy Control Strategy in Hybrid Vehicles. IEEE: Changshu, 2015. pp. 372–377
  • Harivardhagini, S.; Raghuram, A. PID, SMC and DSMC Techniques of a Prototyped Split Range Plant Using LabVIEW. IEEE: Penang, Malaysia, 2015. pp. 325–330.
  • Gupta, P.; Rana, K. P. S.; Kumar, V.; et al. Split-Range Control of a Jacketed CSTR Using Self-Tuning Fuzzy PI Controller. IEEE International Conference on Advances in Computer Engineering and Applications (ICACEA). IEEE: Ghaziabad, India, 2015: pp. 527–533.
  • Fonseca, R. R.; Frattini Fileti, A. M.; Franco, I. C.; da Silva, F. V. Experimental Fuzzy/Split-Range Control: Novel Strategy for Biodiesel Batch Reactor Temperature Control. Chem. Eng. Commun. 2016, 203, 1251–1259. DOI: 10.1080/00986445.2016.1172484.
  • Fatani, S. T.; Patwardhan, R. S.; Andreu, M. A. L. A Novel Single-Input Two-Output (SITO) Strategy for Split Range Control. Advanced Control of Industrial Processes (ADCONIP 2017). IEEE, 2017; p. 348–353.
  • Harivardhagini, S.; Raghuram, A. 2017 PID and Fuzzy Control of pH Neutralization and Split Range Prototype Plants Using LabVIEW. 2017 International Conference on Innovations in Electrical, Electronics, Instrumentation and Media Technology (ICEEIMT). IEEE: Coimbatore; pp. 81–86.
  • Reyes-Lúa, A.; Skogestad, S. Multiple-Input Single-Output Control for Extending the Steady-State Operating Range—Use of Controllers with Different Setpoints. Processes 2019, 7, 941. DOI: 10.3390/pr7120941.
  • Soto, G. J. A.; Hernandez-Riveros, J.-A. Evolutionary Split Range Controller for a Refrigeration System. 16th International Conference on Informatics in Control, Automation and Robotics, 2019. p. 341–351.
  • Yewale, A.; Methekar, R.; Agrawal, S. Dynamic Analysis and Split Range Control for Maximization of Operating Range of Continuous Microbial Fuel Cell. Chin. J. Chem. Eng. 2020, 28, 2368–2381. DOI: 10.1016/j.cjche.2020.06.030.
  • Reyes-Lúa, A.; Skogestad, S. Active Constraint Switching with the Generalized Split Range Control Structure Using the Baton Strategy. IFAC-Pap 2020, 53, 3922–3927. DOI: 10.1016/j.ifacol.2020.12.2242.
  • Reyes-Lúa, A.; Skogestad, S. Multi-Input Single-Output Control for Extending the Operating Range: Generalized Split Range Control Using the Baton Strategy. J. Process Control 2020, 91, 1–11. DOI: 10.1016/j.jprocont.2020.05.001.
  • Vishnoi, V.; Tiwari, S.; Singla, R. Performance Analysis of Moth Flame Optimization-Based Split-Range PID Controller. Mapan 2021, 36, 67–79. DOI: 10.1007/s12647-020-00379-0.
  • Vishnoi, V.; Tiwari, S.; Singla, R. Performance Analysis of Enhanced MFO-Based Online-Tuned Split-Range PID Controller. Arab. J. Sci. Eng. 2021, 46, 9673–9689. DOI: 10.1007/s13369-021-05470-5.
  • Machado, D. O.; Sánchez, A. J.; Gallego, A. J.; de Andrade, G. A.; Normey-Rico, J. E.; Bordons, C.; Camacho, E. F. Split-Range Control for Improved Operation of Solar Absorption Cooling Plants. Renew. Energy 2022, 192, 361–372. DOI: 10.1016/j.renene.2022.04.064.
  • Mishra, S. R.; Yadav, E. S.; Indiran, T. Validation of Split Range Control Algorithm on a Laboratory Scale Batch Reactor Heating System. AIP Publishing: Jaipur, India; 2023.
  • Lisci, S.; Grosso, M.; Tronci, S. Different Control Strategies for a Yeast Fermentation Bioreactor. IFAC-Pap 2021, 54, 306–311. DOI: 10.1016/j.ifacol.2021.08.259.
  • Caspeta, L.; Nielsen, J. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses. mBio 2015, 6, e00431. DOI: 10.1128/mbio.00431-15.
  • Dai, W.; Word, D. P.; Hahn, J. Modeling and Dynamic Optimization of Fuel-Grade Ethanol Fermentation Using Fed-Batch Process. Control Eng. Pract. 2014, 22, 231–241. DOI: 10.1016/j.conengprac.2013.01.005.
  • Souza, A. C. M.; Mousaviraad, M.; Mapoka, K. O. M.; Rosentrater, K. A. Kinetic Modeling of Corn Fermentation with S. cerevisiae Using a Variable Temperature Strategy. Bioengineering 2018, 5, 34. DOI: 10.3390/bioengineering5020034.
  • Petre, E.; Selişteanu, D.; Roman, M. Advanced Nonlinear Control Strategies for a Fermentation Bioreactor Used for Ethanol Production. Bioresour. Technol. 2021, 328, 124836. DOI: 10.1016/j.biortech.2021.124836.
  • Nagy, Z. K. Model Based Control of a Yeast Fermentation Bioreactor Using Optimally Designed Artificial Neural Networks. Chem. Eng. J. 2007, 127, 95–109. DOI: 10.1016/j.cej.2006.10.015.
  • Kumar, M.; Prasad, D.; Giri, B. S.; Singh, R. S. Temperature Control of Fermentation Bioreactor for Ethanol Production Using IMC-PID Controller. Biotechnol. Rep. 2019, 22, e00319. DOI: 10.1016/j.btre.2019.e00319.
  • Kje, R. C.; others. Particle Swarm Optimization. Proceedings of the IEEE International Conference on Neural Networks. 1995; pp. 1942–1948.
  • Shi, Y. Particle Swarm Optimization. IEEE Connect 2004, 2, 8–13.
  • Yadav, S.; Nagar, S. K.; Mishra, A. Tuning of Parameters of PID Controller Using Grey Wolf Optimizer. Proceedings of the International Conference on Advances in Electronics, Electrical & Computational Intelligence (ICAEEC), Rochester, NY; 2020.
  • PID Controller Tuning in Simulink - MATLAB & Simulink - MathWorks India. 2023. https://in.mathworks.com/help/slcontrol/gs/automated-tuning-of-simulink-pid-controller-block.html.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.