110
Views
2
CrossRef citations to date
0
Altmetric
ARTICLES

QSRR approach in examining selected azo dyes

, , &

References

  • Zollinger, H. Color Chemistry: Syntheses, Properties and Applications of Organic Dyes and Pigments. Weinheim: Wiley-VCH, 2003.
  • Hunger, K. Industrial Dyes: Chemistry, Properties and Applications. New York: John Wiley and Sons-VCH, 2003.
  • Ahmad, I.; Murtaza, S.; Ahmed, S. Electrochemical and Photovoltaic Study of Sunset Yellow and Tartrazine Dyes. Monatsh. Chem. 2015, 146(10), 1631–1640.
  • Pagáčiková, D.; Lehotay, J. Determination of Synthetic Colors in Meat Products using High-performance Liquid Chromatography with Photodiode Array Detector, J. Liq. Chromatogr. Relat. Technol. 2015, 38(5), 579–583.
  • Sójka-Ledakowicz, J.; Olczyk, J.; Polak, J.; Grąz, M.; Jarosz-Wilkołazka, A. Dyeing of Textile Fabrics with Bio-dyes. Fibres Text. East. Eur. 2015, 23(1), 120–126.
  • Copaciu, F.; Coman, V.; Simedru, D.; Beldean-Galea, S.; Opriş, O.; Ristoiu, D. Determination of Two Textile Dyes in Wastewater by Solid Phase Extraction and Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry Analysis. J. Liq. Chromatogr. Relat. Technol. 2013, 36(12), 1646–1660.
  • Shanmugam, B. K.; Mahadevan, S. Metabolism and Biotransformation of Azo Dye by Bacterial Consortium Studied in a Bioreaction Calorimeter. Bioresour. Technol. 2015, 196, 500–508.
  • Khehra, M. S.; Saini, H. S.; Sharma, D. K.; Chadha, B. S.; Chimni, S. S. Biodegradation of Azo Dye C. I. Acid Red 88 by an Anoxic–Aerobic Sequential Bioreactor. Dyes Pigments 2006, 70(1), 1–7.
  • Stiborová, M.; Dračínská, H.; Martínek, V.; Svášková, D.; Hodek, P.; Milichovský, J.; Hejduková, Z.; Brotánek, J.; Schmeiser, H. H.; Frei, E. Induced Expression of Cytochrome P450 1A and NAD(P)H:Quinone Oxidoreductase Determined at mRNA, Protein, and Enzyme Activity Levels in Rats Exposed to the Carcinogenic Azo Dye 1-Phenylazo-2-naphthol (Sudan I). Chem. Res. Toxicol. 2013, 26(2), 290–299.
  • Mpountoukas, P.; Pantazaki, A.; Kostareli, E.; Christodoulou, P.; Kareli, D.; Poliliou, S.; Mourelatos, C.; Lambropoulou, V.; Lialiaris, T. Cytogenetic Evaluation and DNA Interaction Studies of the Food Colorants Amaranth, Erythrosine and Tartrazine. Food Chem. Toxicol. 2010, 48(10), 2934–2944.
  • Popli, S.; Patel, U. D. Destruction of Azo Dyes by Anaerobic–Aerobic Sequential Biological Treatment: A Review. Int. J. Environ. Sci. Technol. 2012, 12(1), 405–420.
  • Lv, H.; Zhao, H.; Cao, T.; Qian, L.; Wang, Y.; Zhao, G. Efficient Degradation of High Concentration Azo-dye Wastewater by Heterogeneous Fenton Process with Iron-based Metal-organic Framework. J. Mol. Catal. A 2015, 400, 81–89.
  • Sandor, S. Dyes as Teratogens. Rom. J. Morphol. Embryo. 1992, 38, 13–24.
  • Caliskaner, Z.; Kartal, O.; Baysan, A.; Yesillik, S.; Demirel, F.; Gulec, M.; Sener, O. A Case of Textile Dermatitis Due to Disperse Blue on the Surgical Wound. Human Exp. Toxicol. 2012, 31(1), 101–103.
  • Lisi, P.; Stingeni, L.; Cristaudo, A.; Foti, C.; Pigatto, P.; Gola, M.; Schena, D.; Corazza, M.; Bianchi, L. Clinical and Epidemiological Features of Textile Contact Dermatitis:An Italian Multicentre Study. Contact Derm. 2014, 70(6), 344–350.
  • Gao, Y.; Li, C.; Shen, J.; Yin, H.; An, X.; Jin, H. Effect of Food Azo Dye Tartrazine on Learning and Memory Functions in Mice and Rats, and the Possible Mechanisms Involved. J. Food Sci. 2011, 76(6), T125–T129.
  • Karci, F.; Şener, N.; Yamaç, M.; Şener, I.; Demirçali, A. The Synthesis, Antimicrobial Activity and Absorption Characteristics of Some Novel Heterocyclic Disazo Dyes. Dyes Pigments 2009, 80(1), 47–52.
  • Yahyazadeh, A.; Yousefi, H. Synthesis, Spectral Features and Biological Activity of Some Novel Hetarylazo Dyes Derived from 8-Chloro-4-hydroxyl-2-quinolone. Spectrochim. Acta A 2014, 117, 696–701.
  • Khedr, A. M.; Saad, F. A. Synthesis, Structural Characterization, and Antimicrobial Efficiency of Sulfadiazine Azo-azomethine Dyes and their Bi-homonuclear Uranyl Complexes for Chemotherapeutic Use. Turkish J. Chem. 2015, 39(2), 267–280.
  • Pesyan, N. N.; Soleimani, D.; Jazani, N. H. New Tetrazolic Azo Dyes Linked to (thio)Barbiturate and Electron-rich Aromatics as Potential Antimicrobial Agents. Turkish J. Chem. 2015, 39(5), 998–1011.
  • Gaber, M.; El-Sayed, Y. S.; El-Baradie, K. Y.; Fahmy, R. M. Complex Formation, Thermal Behavior and Stability Competition Between Cu(II) Ion and Cu0 Nanoparticles with Some New Azo Dyes. Antioxidant and in vitro Cytotoxic Activity. Spectrochim. Acta A 2013, 107, 359–370.
  • Simu, G. M.; Chicu, S. A.; Morin, N.; Schmidt, W.; Şişu, E. Direct Dyes Derived from 4,4′-Diaminobenzanilide Synthesis, Characterization and Toxicity Evaluation of a Disazo Symmetric Direct Dye. Turkish J. Chem. 2004, 28(5), 579–585.
  • Czopek, A.; Zagórska, A.; Bajda, M.; Stanisz-Wallis, K.; Pawłowski, M. The Lipophilicity Estimation of Selected Dermatological Drugs Using Micellar Electrokinetic Chromatography Method. J. Liq. Chromatogr. Relat. Technol. 2015, 38(14), 1435–1438.
  • Fujita, T.; Iwasa, J.; Hansch, C. A. New Substituent Constant, π, Derived from Partition Coefficients. J. Am. Chem. Soc. 1964, 86(23), 5175–5180.
  • Leo, A.; Hansch, C.; Elkins, D. Partition Coefficients and their Uses. Chem. Rev. 1971, 71(6), 525–616.
  • Mannhold, R.; van de Waterbeemd, H. Substructure and Whole Molecule Approaches for Calculating log P. J. Comp. Aided Mol. Des. 2001, 15(4), 337–354.
  • Martel, S.; Gillerat, F.; Carosati, E.; Maiarelli, D.; Tetko, I. V.; Mannhold, R.; Carrupt, P. A. Large, Chemically Diverse Dataset of log P Measurements for Benchmarking Studies. Eur. J. Pharm. Sci. 2013, 48(1–2), 21–29.
  • Liang, C.; Lian, H. Z. Recent Advances in Lipophilicity Measurement by Reversed-phase High-performance Liquid Chromatography. TrAC 2015, 68, 28–36.
  • Oros, Gy.; Cserháti, T. Relationship Between the Calculated Physicochemical Parameters and Reversed Phase Thin-layer Chromatographic Retention Behavior of Carboxamide Fungicides and Related Compounds. J. Liq. Chromatogr. Relat. Technol. 2010, 33(7–8), 880–893.
  • Vaštag D.; Perišić-Janjić N.; Tomić J.; Petrović S. Evaluation of the Lipophilicity and Prediction of Biological Activity of Some N-Cyclohexyl-N-substituted-2-phenylacetamide Derivatives using RP-TLC. J. Planar Chromatogr. Mod. TLC 2011, 24(5), 435–440.
  • Cozma, A.; Vlase, L.; Ignat, A.; Zaharia, V.; Gocan, S.; Grinberg, N. Prediction of the Lipophilicity of Eight New p-Toluenesulfonyl-hydrazinothiazole and Hydrazine-bis-thiazole Derivatives: A Comparison Between RP-HPTLC and RP-HPLC. J. Liq. Chromatogr. Relat. Technol. 2012, 35(4), 590–601.
  • Naşcu-Briciu, R. D.; Sârbu, C. Lipophilicity of Oils and Fats Estimated by TLC. J. Sep. Sci. 2013, 36(7), 1317–1326.
  • Mohamed Shenger, M. S.; Filipic, S.; Nikolic, K.; Agbaba, D. Estimation of Lipophilicity and Retention Behavior of Some Alpha Adrenergic and Imidazoline Receptor Ligands using RP-TLC. J. Liq. Chromatogr. Relat. Technol. 2014, 37(20), 2829–2845.
  • Strzemecka, L.; Hawrył, A.; Świeboda, R.; Hawrył, M.; Jagiełło-Wójtowicz, E.; Piątkowska-Chmiel, I.; Herbet, M.; Chodkowska, A. Determination of Lipophilicity of Allyl Thiosemicarbazide, N1-Thiocarbamylamidrazone Derivatives, and their Cyclic Products by RP-HPLC, RP-TLC, and Theoretical Methods: Effects of Selected Compounds on the CNS of Mice. J. Liq. Chromatogr. Relat. Technol. 2015, 38(15), 1452–1465.
  • Virtual Computational Chemistry Laboratory. http://www.vcclab.org/ (accessed 15-09-2013).
  • Vastag, G.; Apostolov, S.; Nakomčić, J.; Matijević, B. Application of Chemometric Methods in Examining of the Retention Behavior and Lipophilicity of Newly Synthesized Cyanoacetamide Derivatives. J. Liq. Chromatogr. Relat. Technol. 2014, 37(17), 2529–2545.
  • Apostolov, S.; Vastag, G.; Matijević, B.; Petrović, S. Chromatographic and Computational Assessment of Potential Biological Activity of N-(Substituted phenyl)-2-chloroacetamides Applying Multivariate Methods. J. Liq. Chromatogr. Relat. Technol. 2015, 38 (18), 1691–1698.
  • Ionita, G.; Constantinescu, T.; Ionita, P. Normal and Reversed-phase TLC of Some Hydrazine Derivatives. J. Planar Chromatogr. Mod. TLC 1998, 11(2), 141–144.
  • Mijin, D. Z.; Ušćumlić, G. S.; Valentić, N. V.; Marinković, A. D. Synthesis of Azo Pyridone Dyes [Sinteza arilazo piridonskih boja]. Hemijska Industrija 2011, 65(5), 517–532.
  • Biagi, G. L.; Barbaro, A. M.; Sapone, A.; Recanatini, M. Determination of Lipophilicity by Means of Reversed-phase Thin-layer Chromatography. I. Basic Aspects and Relationship Between Slope and Intercept of TLC Equations. J. Chromatogr. A 1994, 662(2), 341–361.
  • Cserháti, T. Lipophilicity Determination of Some Monoamine Oxidase Inhibitors by Reversed-phase Thin-layer Chromatography. The Effect of pH. J. Liq. Chromatogr. 1993, 16(8), 1805–1817.
  • Vastag, G.; Apostolov, S.; Perišić-Janjić, N.; Matijević, B. Multivariate Analysis of Chromatographic Retention Data and Lipophilicity of Phenylacetamide Derivatives. Anal. Chim. Acta 2013, 767(1), 44–49.
  • Cobzac, S. C.; Casoni, D.; Sârbu, C. Lipophilicity of Amine Neurotransmitter Precursors, Metabolites and Related Drugs Estimated on Various TLC Plates. J. Chromatogr. Sci. 2014, 52(9), 1095–1103.
  • Vastag, G. Gy.; Apostolov, S. Lj.; Matijević, B. M.; Marinković, A. D. Chemometric Approach in Studying of the Retention Behavior and Lipophilicity of Potentially Biologically Active N-Substituted-2-phenylacetamide Derivatives. J. Braz. Chem. Soc. 2014, 25(11), 1948–1955.
  • Andrić, F.; Héberger, K. Towards Better Understanding of Lipophilicity: Assessment of in silico and Chromatographic log P Measures for Pharmaceutically Important Compounds by Nonparametric Rankings. J. Pharm. Biomed. Anal. 2015, 115, 183–191.
  • Hawrył, A.; Küsmierz, E.; Hawrył, M.; Świeboda, R.; Wujec, M. Determination of Lipophilicity of New Thiosemicarbazide and 1,2,4-Triazole-3-thione Derivatives using Reversed-phase HPLC Method and Theoretical Calculations. J. Liq. Chromatogr. Relat. Technol. 2015, 38(4), 430–437.
  • Stasiak, J.; Koba, M.; Bączek, T.; Buciński, A. Chemometric Analysis of Some Biologically Active Groups of Drugs on the Basis Chromatographic and Molecular Modeling Data. Med. Chem. 2015, 11(5), 432–452.
  • Komsta, L. The Multivariate Look at the TLC Retention. J. Liq. Chromatogr. Relat. Technol. 2016, 39(5–6), 242–248.
  • Vastag, G.; Apostolov, S.; Matijević, B.; Djaković-Sekulić, T. Structure–Interaction Relationship Study of N-(4-Phenylsubstituted) Cyanoacetamides by Multivariate Methods. J. Chemom. 2016, 30 (4), 210–216.
  • Vastag, Gy.; Apostolov, S.; Matijević, B.; Petrović, S. Establishing Dependences Between Different Lipophilic Parameters, of New Potentially Biologically Active N-Substituted-2-phenylacetamide Derivatives by Applying Multivariate Methods. J. Chromatogr. Sci. 2015, 53(2), 312–319.
  • Pomerantsev, A. Chemometrics in Excel. New Jersey: John Wiley and Sons-VCH, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.