1,687
Views
11
CrossRef citations to date
0
Altmetric
Articles

Relations between kinetic parameters of different column models for liquid chromatography applying core-shell particles

ORCID Icon, , & ORCID Icon
Pages 16-30 | Received 26 Nov 2018, Accepted 13 Jan 2019, Published online: 27 Feb 2019

References

  • Guiochon, G.; Lin, B. Modeling for Preparative Chromatography; Academic Press: New York, USA, 2003.
  • Guiochon, G.; Felinger, A.; Shirazi, D. G.; Katti, A. M. Fundamentals of Preparative and Nonlinear Chromatography; 2nd ed.; Elsevier Academic Press: New York, USA, 2006.
  • Li, P.; Xiu, G.; Rodrigues, A. E. Modeling Separation of Proteins by Inert Core Adsorbent in a Batch Adsorber. Chem. Eng. Sci. 2003, 58, 3361–3371. DOI: 10.1016/S0009-2509(03)00217-3.
  • Kaczmarski, K.; Guiochon, G. Modeling of the Mass-transfer Kinetics in Chromatographic Columns Packed with Shell and Pellicular Particles. Anal. Chem. 2007, 79, 4648–4656. DOI: 10.1021/ac070209w.
  • Horvath, C. G.; Preiss, B. A.; Lipsky, S. R. Fast Liquid Chromatography: An Investigation of Operating Parameters and the Separation of Nucleotides on Pellicular Ion Exchangers. Anal. Chem. 1967, 39, 1422–1428. DOI: 10.1021/ac60256a003.
  • Guiochon, G.; Gritti, F. Shell Particles, Trials, Tribulations and Triumphs. J. Chromatogr. A. 2011, 1218, 1915–1938. DOI: 10.1016/j.chroma.2011.01.080.
  • Kaczmarsk, K. On the Optimization of the Solid Core Radius of Superficially Porous Particles for Finite Adsorption Rate. J. Chromatogr. A. 2011, 1218, 951–958. DOI: 10.1016/j.chroma.2010.12.093.
  • Felinger, A.; Guiochon, G. Comparison of the Kinetic Models of Linear Chromatography. J. Chromatogr. Suppl. 2004, 60, S175–S180.
  • Broeckhoven, K.; Cabooter, D.; Desmet, G. Kinetic Performance Comparison of Fully and Superficially Porous Particles with Sizes Ranging between 2.7 μm and 5 μm : Intrinsic Evaluation and Application to a Pharmaceutical Test Compound. J. Pharm. Anal. 2013, 3, 313–323. DOI: 10.1016/j.jpha.2012.12.006.
  • Cavazzini, A.; Gritti, F.; Kaczmarski, K.; Marchetti, N.; Guiochon, G. Mass-transfer Kinetics in a Shell Packing Material for Chromatography. Anal. Chem. 2007, 79, 5972–5979. DOI: 10.1021/ac070571a.
  • Gu, T.; Liu, M.; Cheng, K.-S. C.; Ramaswamy, S.; Wang, C. A General Rate Model Approach for the Optimization of the Core Radius Fraction for Multicomponent Isocratic Elution in Preparative Nonlinear Liquid Chromatography Using Cored Beads. Chem. Eng. Sci. 2011, 66, 3531–3539. DOI: 10.1016/j.ces.2011.04.021.
  • Kahsay, G.; Broeckhoven, K.; Adams, E.; Desmet, G.; Cabooter, D. Kinetic Performance Comparison of Fully and Superficially Porous Particles with a Particle Size of 5 μm: Intrinsic Evaluation and Application to the Impurity Analysis of Griseofulvin. Talanta. 2014, 122, 122–129. DOI: 10.1016/j.talanta.2014.01.050.
  • Lambert, N.; Kiss, I.; Felinger, A . Mass-transfer Properties of Insulin on Core-shell and Fully Porous Stationary Phases. J. Chromatogr. A. 2014, 1366, 84–91. DOI: 10.1016/j.chroma.2014.09.025.
  • Li, P.; Xiu, G.; Rodrigues, A. E. Analytical Breakthrough Curves for Inert Core Adsorbent with Sorption Kinetics. AIChE J. 2003, 49, 2974–2979. DOI: 10.1002/aic.690491127.
  • Li, P.; Xiu, G.; Rodrigues, A. E. Modeling Break Through and Elution Curves in Fixed Bed of Inert Core Adsorbents: Analytical and Approximate Solutions. Chem. Eng. Sci. 2004, 59, 3091–3103. DOI: 10.1016/j.ces.2004.04.034.
  • Li, P.; Yu, J.; Xiu, G.; Rodrigues, A. E. A Strategy for Tailored Design of Efficient and Low-pressure Drop Packed Column Chromatography. AIChE J. 2010, 56, 3091–3098. DOI: 10.1002/aic.12218.
  • Li, P.; Xiu, G.; Rodrigues, A. E. Modeling Diffusion and Reaction for Inert-Core Catalyst in Batch and Fixed Bed Reactors. Can. J. Chem. Eng. 2019, 97, 217-225. DOI: 10.1002/cjce.23189.
  • Gengling, Y.; Zhide, H. Universal Theoretical Moment Expression for Elution and Formal Chromatography of Pellicular Ion Exchange Resins. React. Funct. Polym. 1996, 31, 25–29. DOI: 10.1016/1381-5148(96)00037-5.
  • Zhou, X.; Sun, Y.; Liu, Z. Superporous Pellicular Agarose-glass Composite Particle for Protein Adsorption. Biochem. Eng. J. 2007, 34, 99–106. DOI: 10.1016/j.bej.2006.09.018.
  • Javeed, S.; Qamar, S.; Ashraf, W.; Seidel-Morgenstern, A.; Warnecke, G. Analysis and Numerical Investigation of Two Dynamic Models for Liquid Chromatography. Chem. Eng. Sci. 2013, 90, 17–31. DOI: 10.1016/j.ces.2012.12.014.
  • Qamar, S.; Abbasi, J. N.; Javeed, S.; Shah, M.; Khan, F. U.; Seidel-Morgenstern, A. Analytical Solutions and Moment Analysis of Chromatographic Models for Rectangular Pulse Injections. J. Chromatogr. A. 2013, 1315, 92–106. DOI: 10.1016/j.chroma.2013.09.031.
  • Qamar, S.; Abbasi, J. N.; Javeed, S.; Seidel-Morgenstern, A. Analytical Solutions and Moment Analysis of General Rate Model for Linear Liquid Chromatography. Chem. Eng. Sci. 2014, 107, 192–205. DOI: 10.1016/j.ces.2013.12.019.
  • Qamar, S.; Abbasi, J. N.; Mehwish, A.; Seidel-Morgenstern, A. Linear General Rate Model of Chromatography for Core-shell Particles: Analytical Solutions and Moment Analysis. Chem. Eng. Sci. 2015, 137, 352–363. DOI: 10.1016/j.ces.2015.06.053.
  • Durbin, F. Numerical Inversion of Laplace Transforms: An Efficient Improvement to Dubner and Abate’s Method. Comput. J. 1974, 17, 371–376. DOI: 10.1093/comjnl/17.4.371.
  • Rice, R. G.; Do, D. D. Applied Mathematics and Modeling for Chemical Engineers; Wiley-Interscience: New York, USA, 1995.
  • Dorota, A.; Kaczmarski, K.; Wojciech, P.; Seidel-Morgenstern, A. Concentration Dependence of Lumped Mass Transfer Coefficients Linear versus Non-linear Chromatography and Isocratic versus Gradient Operation. J. Chromatogr. A. 2003, 1006, 61–76. DOI: 10.1016/S0021-9673(03)00948-8.
  • Kubin, M. Beitrag Zur Theorie Der Chromatographie. Collect. Czech. Chem. Commun. 1965, 30, 1104–1118. DOI: 10.1135/cccc19651104.
  • Kubin, M. Beitrag Zur Theorie Der Chromatographie II. Einfluss Der Diffusion Ausserhalb Und Der Adsorption Innerhalb Des Sorbens-Korns. Collect. Czech. Chem. Commun. 1965, 30, 2900–2907. DOI: 10.1135/cccc19652900.
  • Kucera, E. Contribution to the Theory of Chromatography: Linear Non-equilibrium Elution Chromatography. J. Chromatogr. A. 1965, 19, 237–248. DOI: 10.1016/S0021-9673(01)99457-9.
  • Li, P.; Yu, J.; Xiu, G.; Rodrigues, A. E. Perturbation Chromatography with Inert Core Adsorbent: Moment Solution for Two-component Nonlinear Isotherm Adsorption. Chem. Eng. Sci. 2011, 66, 4555–4560. DOI: 10.1016/j.ces.2011.06.016.
  • Miyabe, K.; Guiochon, G. Influence of the Modification Conditions of Alkyl Bonded Ligands on the Characteristics of Reversed-phase Liquid Chromatography. J. Chromatogr. A. 2000, 903, 1–12. DOI: 10.1016/S0021-9673(00)00891-8.
  • Miyabe, K.; Guiochon, G. Measurement of the Parameters of the Mass Transfer Kinetics in High Performance Liquid Chromatography. J. Sep. Sci. 2003, 26, 155–173. DOI: 10.1002/jssc.200390024.
  • Miyabe, K. Surface Diffusion in Reversed-phase Liquid Chromatography Using Silica Gel Stationary Phases of Different C1 and C18 Ligand Densities. J. Chromatogr. A. 2007, 1167, 161–170. DOI: 10.1016/j.chroma.2007.08.045.
  • Miyabe, K. Moment Analysis of Chromatographic Behavior in Reversed-phase Liquid Chromatography. J. Sep. Sci. 2009, 32, 757–770. DOI: 10.1002/jssc.200800607.
  • Ruthven, D. M. Principles of Adsorption and Adsorption Processes; Wiley-Interscience: New York, USA, 1984.
  • Schneider, P.; Smith, J. M. Adsorption Rate Constants from Chromatography. AIChE J. 1968, 14, 762–771. DOI: 10.1002/aic.690140516.
  • Suzuki, M. Notes on Determining the Moments of the Impulse Response of the Basic Transformed Equations. J. Chem. Eng. Japan. 1974, 6, 540–543. DOI: 10.1252/jcej.6.540.
  • Wolff, H.-J.; Radeke, K.-H.; Gelbin, D. Heat and Mass Transfer in Packed beds-IV Use of Weighted Moments to Determine Axial Dispersion Coefficient. Chem. Eng. Sci. 1979, 34, 101–107. DOI: 10.1016/0009-2509(79)85181-7.
  • Wolff, H.-J.; Radeke, K.-H.; Gelbin, D. Weighted Moments and the Pore-diffusion Model. Chem. Eng. Sci. 1980, 35, 1481–1485. DOI: 10.1016/0009-2509(80)85152-9.
  • Qamar, S.; Sattar, F. A.; Abbasi, J. N.; Seidel-Morgenstern, A. Numerical Simulation of Nonlinear Chromatography with Core-shell Particles Applying the General Rate Model. Chem. Eng. Sci. 2016, 147, 54–64. DOI: 10.1016/j.ces.2016.03.027.
  • Van der Laan, T. Letter to the Editors on Notes on the Diffusion Type Model for the Longitudinal Mixing in Flow. Chem. Eng. Sci. 1958, 7, 187–191.
  • Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed.; McGraw-Hill: New York, USA, 1984; p. 146.