493
Views
24
CrossRef citations to date
0
Altmetric
Articles

Advances in sample preparation in chromatography for organic environmental pollutants analyses

ORCID Icon, , &

References

  • Pavlovic, D. M.; Babic, S.; Horvat, A. J.; Kaštelan-Macan, M. Sample Preparation in Analysis of Pharmaceuticals. Tren. Anal. Chem. 2007, 26, 1062–1075. DOI: 10.1016/j.trac.2007.09.010.
  • Majors, R. E. Sample Preparation Perspectives: Trends in Sample Preparation and Automation—What the Experts Are Saying. LC GC. 1995, 13, 742–749.
  • Alpendurada, M. F. Solid-phase Microextraction: a Promising Technique for Sample Preparation in Environmental Analysis. J. Chrom. A. 2000, 889, 3–14. DOI: 10.1016/S0021-9673(00)00453-2.
  • Moldoveany, S.; David, V. Modern Sample Preparation for Chromatography, 1st ed.; Elsever: The Netherland, 2015.
  • Rosaria, C. Newly Introduced Sample Preparation Techniques: Towards Miniaturization. Crit. Rev. Anal. Chem. 2014, 44, 299–310. DOI: 10.1080/10408347.2013.860874
  • Ali, I.; Suhail, M.; Aboul-Enein, H. Y. Chiral Analysis of Macromolecules. J. Liq. Chrom. Relat. Technol. 2018, 41, 749–760. DOI: 10.1080/10826076.2018.1514509.
  • Ali, I.; Suhail, M.; Lone, M. N.; Alothman, Z. A.; Alwarthan, A. Chiral Resolution of Multichiral Center Racemates by Different Modalities of Chromatography. J. Liq. Chrom. Relat. Technol. 2016, 39, 435–444. DOI: 10.1080/10826076.2016.1152582.
  • Ali, I.; Suhail, M.; Asnin, L.; Aboul-Enein, H. Y. Reverse Elution Order of ß-Blockers in Chiral Separation. J. Liq. Chrom. Relat. Technol. 2017. DOI: 10.1080/10826076.2017.1327443.
  • Ali, I.; Lone, M. N.; Suhail, M.; Al-Othman, Z. A.; Alwarthan, A. Enantiomeric Resolution and Simulation Studies of Four Enantiomers of 5-bromo-3-ethyl-3-(4nitrophenyl)-Piperidine-2,6-dione on a Chiralpak IA Column. RSC Adv. 2016, 6, 14372–14380. DOI: 10.1039/C5RA26462F.
  • Ali, I.; Suhail, M.; Sanagi, M. M.; Aboul-Enein, H. Y. Ionic Liquids in HPLC and CE: A Hope for Future. Crit. Rev. Anal. Chem. 2017, 47, 332–339. DOI: 10.1080/10408347.2017.1294047.
  • Tipler, A. An Introduction to Headspace Sampling in Gas Chromatography, Fundamentals and Theory Technical Note; PerkinElmer, Inc.: Waltham, MA, 2013–2014.
  • Snow, N. H.; Bullock, G. P. Novel Techniques for Enhancing Sensitivity in Static Headspace Extraction- gas Chromatography. J. Chrom. A. 2010, 1217, 2726–2735. DOI: 10.1016/j.chroma.2010.01.005.
  • Soria, A. C.; García-Sarrió, M. J.; Sanz, M. L. Volatile Sampling by Headspace Techniques. Tren. Anal. Chem. 2015, 71, 85–99. DOI: 10.1016/j.trac.2015.04.015.
  • Rosell, M.; Lacorte, S.; Ginebreda, A.; Barceló, D. Simultaneous Determination of Methyl Tert.-Butyl Ether and Its Degradation Products, Other Gasoline Oxygenates and Benzene, Toluene, Ethylbenzene and Xylenes in Catalonian Groundwater by Purge-and-trap-gas Chromatography-mass Spectrometry. J. Chrom. A. 2003, 995, 171–184. DOI: 10.1016/S0021-9673(03)00500-4.
  • Cordell, R. L.; Pandya, H.; Hubbard, M.; Turner, M. A.; Monks, P. S. GC-MS Analysis of Ethanol and Other Volatile Compounds in Micro-volume Blood Samples Quantifying Neonatal Exposure. Anal. Bioanal. Chem. 2013, 405, 4139–4147. DOI: 10.1007/s00216-013-6809-1.
  • Wells, M. J. Principles of Extraction and the Extraction of Semivolatile Organics from Liquids. In: Sample Preparation Techniques in Analytical Chemistry; Mitra, S., Ed.; John Wiley & Sons: New York, USA, 2003; 162, pp. 37–138.
  • Solvent miscibility table. [Online], 14th June 2016. https://www.erowid.org/archive/rhodium/pdf/solv-ent.miscibility.pdf
  • Okumura, T.; Imamura, K. Simultaneous Determination of Pesticides by Capillary Gas Chromatography/mass Spectrometry. J. J. W. Poll. Res. 1991, 14, 109–122. DOI: 10.2965/jswe1978.14.109
  • Gilbert-López, B.; García-Reyes, J. F.; Molina-Díaz, A. Sample Treatment and Determination of Pesticide Residues in Fatty Vegetable Matrices: A Review. Tala. 2009, 79, 109–128. DOI: 10.1016/j.talanta.2009.04.022.
  • García-Reyes, J. F.; Ferrer, C. J.; Gómez-Ramos, M.; Fernández-Alba, A. R.; García-Reyes, J. F.; Molina-Díaz, A. Determination of Pesticide Residues in Olive Oil and Olives. Tre. Anal. Chem. 2007, 26, 239–251. DOI: 10.1016/j.trac.2007.01.004.
  • Silvestro, L.; Savu, S. R. An Update on Solid Phase-supported Liquid Extraction. Bioanalysis. 2015, 7, 2177–2186. DOI: 10.4155/bio.15.144.
  • Subedi, B.; Aguilar, L.; Robinson, E. M.; Hageman, K. J.; Björklund, E.; Sheesley, R. J.; Usenko, S. Selective Pressurized Liquid Extraction as a Sample-preparation Technique for Persistent Organic Pollutants and Contaminants of Emerging Concern. Trend Anal. Chem. 2015, 68, 119–132. DOI: 10.1016/j.trac.2015.02.011.
  • Murata, K.; Ikeda, S. Homogeneous Liquid-liquid Extraction Method. Bunseki Kagaku. 1969, 18, 1137. DOI: 10.2116/bunsekikagaku.18.1137.
  • Farajzadeh, M. A.; Bahram, M.; Zorita, S.; Mehr, B. G. Optimization and Application of Homogeneous Liquid-liquid Extraction in Preconcentration of Copper (II) in a Ternary Solvent System. J. H. Mater. 2009, 161, 1535–1543. DOI: 10.1016/j.jhazmat.2008.05.041.
  • Myasein, F.; Kim, E.; Zhang, J.; Wu, H.; El-Shourbagy, T. A. Rapid, simultaneous Determination of Lopinavir and Ritonavir in Human Plasma by Stacking Protein Precipitations and Salting-out Assisted Liquid/liquid Extraction, and Ultrafast LC-MS/MS. Anal. Chim. Acta. 2009, 651, 112–116. DOI: 10.1016/j.aca.2009.08.010.
  • Zhang, J.; Rodila, R.; Gage, E.; Hautman, M.; Fan, L.; King, L. L.; Wu, H.; El-Shourbagy, T. A. High- throughput Salting-out Assisted Liquid/liquid Extraction with Acetonitrile for the Simultaneous Determination of Simvastatin and Simvastatin Acid in Human Plasma with Liquid Chromatography. Anal. Chim. Acta. 2010, 661, 167–172. DOI: 10.1016/j.aca.2009.12.023.
  • Shamsipur, M.; Hassan, J. A Novel Miniaturized Homogenous Liquid-liquid Solvent Extraction-high Performance Liquid Chromatographic-fluorescence Method for Determination of Ultra Traces of Polycyclic Aromatic Hydrocarbons in Sediment Samples. J. Chromat. A. 2010, 1217, 4877–4882. DOI: 10.1016/j.chroma.2010.05.038.
  • Zhao, F. J.; Tang, H.; Zhang, Q. H.; Yang, J.; Davey, A. K.; Wang, J. P. Salting-out Homogeneous Liquid-liquid Extraction Approach Applied in Sample Pre-processing for the Quantitative Determination of Entecavir in Human Plasma by LC-MS. J. Chro. B. Ana. Tech. Bio. Life Sci. 2012, 881–882, 119–125. DOI: 10.1016/j.jchromb.2011.12.003.
  • Rezaee, M.; Assadi, Y.; Hosseini, M. M. R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of Organic Compounds in Water Using Dispersive Liquid-liquid Microextraction. J. Chro. A. 2006, 1116, 1–9. DOI: 10.1016/j.chroma.2006.03.007.
  • Kocúrová, L.; Balogh, I. S.; Šandrejová, J.; Andruch, V. Recent Advances in Dispersive Liquid–liquid Microextraction Using Organic Solvents Lighter than Water: A Review. Micr. J. 2012, 102, 11–17. DOI: 10.1016/j.microc.2011.12.002.
  • Xiong, C.; Ruan, J.; Cai, Y.; Tang, Y. Extraction and Determination of Some Psychotropic Drugs in Urine Samples Using Dispersive Liquid-liquid Microextraction Followed by High-performance Liquid Chromatography. J. Pharm. Biomed. Anal. 2009, 49, 572–578. DOI: 10.1016/j.jpba.2008.11.036.
  • Xu, H.; Song, D.; Cui, Y.; Hu, S.; Yu, Q.; Feng, Y. Analysis of Hexanal and Heptanal in Human Blood by Simultaneous Derivatization and Dispersive Liquid-liquid Microextraction Then LC-APCI-MS-MS. Chroma. 2009, 70, 775–781. DOI: 10.1365/s10337-009-1208-7.
  • Cruz-Vera, M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. One-step in-syringe Ionic Liquid-based Dispersive Liquid-liquid Microextraction. J. Chro. A. 2009, 1216, 6459–6465. DOI: 10.1016/j.chroma.2009.07.040.
  • Rezaee, M.; Yamini, Y.; Faraji, M. Evolution of Dispersive Liquid-liquid Microextraction Method. J. Chro. A. 2010, 1217, 2342–2357. DOI: 10.1016/j.chroma.2009.11.088.
  • Lili, L.; Xu, H.; Song, D.; Cui, Y.; Hu, S.; Zhang, G. Analysis of Volatile Aldehyde Biomarkers in Human Blood by Derivatization and Dispersive Liquid-liquid Microextraction Based on Solidification of Floating Organic Droplet Method by High Performance Liquid Chromatography. J. Chro. A 2010, 1217, 2365–2370. DOI: 10.1016/j.chroma.2010.01.081.
  • Zarei, A. R.; Gholamian, F. Development of a Dispersive Liquid-liquid Microextraction Method for Spectrophotometric Determination of Barbituric Acid in Pharmaceutical Formulation and Biological Samples. Anal. Biochem. 2011, 412, 224–228. DOI: 10.1016/j.ab.2011.02.004.
  • Zgola-Grzeskowiak, A.; Kaczorek, E. Isolation, Preconcentration and Determination of Rhamnolipids in Aqueous Samples by Dispersive Liquid-liquid Microextraction and Liquid Chromatography with Tandem Mass Spectrometry. Talanta. 2011, 83, 744–750. DOI: 10.1016/j.talanta.2010.10.037.
  • Li, J.; Lu, W.; Ma, J.; Chen, L. Determination of Mercury(II) in Water Samples Using Dispersive Liquid- liquid Microextraction and Back Extraction along with Capillary Zone Electrophoresis. Microchim. Acta. 2011, 175, 301–308. DOI: 10.1007/s00604-011-0679-z.
  • Soltani, S.; Ramezani, A. M.; Soltani, N.; Jouyban, A. Analysis of Losartan and Carvedilol in Urine and Plasma Samples Using a Dispersive Liquid-liquid Microextraction Isocratic HPLC-UV Method. Bioanalysis. 2012, 4, 2805–2821. DOI: 10.4155/bio.12.261.
  • Ranjbari, E.; Golbabanezhad-Azizi, A. A.; Hadjmohammadi, M. R. Preconcentration of Trace Amounts of Methadone in Human Urine, Plasma, Saliva and Sweat Samples Using Dispersive Liquid-liquid Microextraction Followed by High Performance Liquid Chromatography. Talanta. 2012, 94, 116–122. DOI: 10.1016/j.talanta.2012.03.004.
  • Ghambari, H.; Hadjmohammadi, M. Low-density Solvent-based Dispersive Liquid-liquid Microextraction Followed by High Performance Liquid Chromatography for Determination of Warfarin in Human Plasma. J. Chro. B. Ana. Tech. Bio. Life 2012, 899, 66–71. DOI: 10.1016/j.jchromb.2012.04.035.
  • Zhang, J.; Li, M.; Li, L.; Li, Y.; Peng, B.; Zhang, S.; Gao, H.; Zhou, W. Investigation of the Ultrasound Effect and Target Analyte Selectivity of Dispersive Liquid-liquid Microextraction and Its Application to a Quinocetone Pharmacokinetic Study. J. Chro. A 2012, 1268, 1–8. DOI: 10.1016/j.chroma.2012.10.028.
  • Ma, J.; Lu, W.; Chen, L. Recent Advances in Dispersive Liquid - liquid Microextraction for Organic Compounds Analysis in Environmental Water: A Review. Cac. 2012, 8, 78–90. DOI: 10.2174/157341112798472170.
  • Kohler, I.; Schappler, J.; Sierro, T.; Rudaz, S. Dispersive Liquid-liquid Microextraction Combined with Capillary Electrophoresis and Time-of-flight Mass Spectrometry for Urine Analysis. J. Pharm Biom. Anal. 2013, 73, 82–89. DOI: 10.1016/j.jpba.2012.03.036.
  • Jain, R.; Singh, R. Applications of Dispersive Liquid–liquid Micro-extraction in Forensic Toxicology. Trends Ana. Chem. 2016, 75, 227–237. DOI: 10.1016/j.trac.2015.07.007.
  • Liu, H.; Dasgupta, P. K. Analytical Chemistry in a Drop. Solvent Extraction in a Microdrop. Anal. Chem. 1996, 68, 1817–1821. DOI: 10.1021/ac960145h.
  • Jeannot, M. A.; Cantwell, F. F. Solvent Microextraction into a Single Drop. Anal. Chem. 1996, 68, 2236–2240. DOI: 10.1021/ac960042z.
  • He, Y.; Lee, H. K. Liquid-Phase Microextraction in a Single Drop of Organic Solvent by Using a Conventional Microsyringe. Anal. Chem. 1997, 69, 4634–4640. DOI: 10.1021/ac970242q.
  • Xiao, Q.; Hu, B.; He, M. Speciation of Butyltin Compounds in Environmental and Biological Samples Using Headspace Single Drop Microextraction Coupled with Gas Chromatography-inductively Coupled Plasma Mass Spectrometry. J Chromat. A. 2008, 1211, 135–141. DOI: 10.1016/j.chroma.2008.09.089.
  • Lucena, R.; Cruz-Vera, M.; Cárdenas, S.; Valcárcel, M. Liquid-phase Microextraction in Bioanalytical Sample Preparation. Bioanalysis. 2009, 1, 135–149. DOI: 10.4155/bio.09.16.
  • Przyjazny, M. A.; Kokosa, J. M. Single Drop Microextraction Development, applications and Future Trends. J. Chromat. A. 2010, 1217, 2326–2336. DOI: 10.1016/j.chroma.2009.10.089.
  • Jain, A.; Verma, K. K. Recent Advances in Applications of Single-drop Microextraction: a Review. Anal. Chim. Acta. 2011, 706, 37–65. DOI: 10.1016/j.aca.2011.08.022.
  • Choi, K.; Kim, J.; Chung, D. S. Single-drop Microextraction in Bioanalysis. Bioanalysis. 2011, 3, 799–815. DOI: 10.4155/bio.11.3.
  • Nuhu, A. A.; Basheer, C.; Saad, B. Liquid-phase and Dispersive Liquid-liquid Microextraction Techniques with Derivatization: recent Applications in Bioanalysis. J Chromat. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 1180–1188. DOI: 10.1016/j.jchromb.2011.02.009.
  • Wu, H. F.; Kailasa, S. K.; Lin, C. H. Single Drop Microextraction Coupled with Matrix-assisted Laser Desorption/ionization Mass Spectrometry for Rapid and Direct Analysis of Hydrophobic Peptides from Biological Samples in High Salt Solution. Rapid Commun. Mass Spectrom. 2011, 25, 307–315. DOI: 10.1002/rcm.4843.
  • AlOthman, Z. A.; Dawod, M.; Kim, J.; Chung, D. S. Single-drop Microextraction as a Powerful Pretreatment Tool for Capillary Electrophoresis: A Review. Anal. Chim. Acta. 2012, 739, 14–24. DOI: 10.1016/j.aca.2012.06.005.
  • Saraji, M.; Khaj, N. Recent Advances in Liquid Microextraction Techniques Coupled with MS for Determination of Small-molecule Drugs in Biological Samples. Bioanalysis. 2012, 4, 725–739. DOI: 10.4155/bio.12.26.
  • Han, D.; Row, K. H. Trends in Liquid-phase Microextraction, and Its Application to Environmental and Biological Samples. Microchim. Acta. 2012, 176, 1–22. DOI: 10.1007/s00604-011-0678-0.
  • Hauser, B.; Popp, P. Membrane Assisted Solvent Extraction of Organochlorine Compounds in Combination with Large Volume Injection/gas Chromatography Electron Capture Detection. J. Sep. Sci. 2001, 24, 551–560. DOI: 10.1002/1615-9314(20010801)24:7<551::AID-JSSC551>3.0.CO;2-2.
  • Hauser, B.; Popp, P.; Kleine-Benne, E. Membrane-assisted Solvent Extraction of Triazines and Other Semi-volatile Contaminants Directly Coupled to Large-volume Injection-gas Chromatography-mass Spectrometric Detection. J. Chromat. A. 2002, 963, 27–36. DOI: 10.1016/S0021-9673(02)00135-8.
  • Pedersen-Bjergaard, S.; Rasmussen, K. E. Liquid-liquid-liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis. Anal. Chem. 1999, 71, 2650–2656. DOI: 10.1021/ac990055n.
  • Fotouhi, L.; Yamini, Y.; Molaei, S.; Seidi, S. Comparison of Conventional Hollow Fiber Based Liquid Phase Microextraction and Electromembrane Extraction Efficiencies for the Extraction of Ephedrine from Biological Fluids. J. Chromat. A 2011, 1218, 8581–8586. DOI: 10.1016/j.chroma.2011.09.078.
  • Rasmussen, K. E.; Pedersen-Bjergaard, S.; Krogh, M.; Ugland, H. G.; Grønhaug, T. Development of a Simple in-vial Liquid-phase Microextraction Device for Drug Analysis Compatible with Capillary Gas Chromatography, capillary Electrophoresis and High-performance Liquid Chromatography. J. Chromat. A. 2000, 873, 3–11. DOI: 10.1016/S0021-9673(99)01163-2.
  • Pedersen-Bjergaard, S.; Rasmussen, K. E. Liquid-phase Microextraction with Porous Hollow Fibers a Miniaturized and Highly Flexible Format for Liquid-liquid Extraction. J. Chromat. A. 2008, 1184, 132–142. DOI: 10.1016/j.chroma.2007.08.088.
  • Lee, J.; Lee, H. K.; Rasmussen, K. E.; Pedersen-Bjergaard, S. Environmental and Bioanalytical Applications of Hollow Fiber Membrane Liquid-phase Microextraction. Anal. Chim. Acta. 2008, 624, 253–268. DOI: 10.1016/j.aca.2008.06.050.
  • Saraji, M.; Khalili, B.; Hajialiakbari, M.; Bidgoli, A. A. Comparison of Dispersive Liquid-liquid Microextraction and Hollow Fiber Liquid-liquid-liquid Microextraction for the Determination of Fentanyl Alfentanil and Sufentanil in Water and Biological Fluids by High-performance Liquid Chromatography. Anal. Bioanal. Chem. 2011, 400, 2149–2158. DOI: 10.1007/s00216-011-4874-x.
  • Ghambarian, M.; Yamini, Y.; Esrafili, A. Developments in Hollow Fiber Based Liquid-phase Microextraction Principles and Applications. Microchim. Acta 2012, 177, 271–294. DOI: 10.1007/s00604-012-0773-x.
  • Guo, X.; He, M.; Chen, B.; Hu, B. Phase Transfer Hollow Fiber Liquid Phase Microextraction Combined with Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry for the Determination of Trace Heavy Metals in Environmental and Biological Samples. Talanta. 2012, 101, 516–523. DOI: 10.1016/j.talanta.2012.10.017.
  • Bello-López, M. Á.; Ramos-Payán, M.; Ocaña-González, J. A.; Fernández-Torres, R.; Callejón- Mochón, M. Analytical Applications of Hollow Fiber Liquid Phase Microextraction (HF-LPME): A Review. Anal. Lett. 2012, 45, 804–830. DOI: 10.1080/00032719.2012.655676.
  • Farajzadeh, M. A.; Sorouraddin, S. M.; Mogaddam, M. R. Liquid Phase Microextraction of Pesticides: A Review on Current Methods. Microchim. Acta. 2014, 181, 829–851. DOI: 10.1007/s00604-013-1157-6.
  • Carasek, E.; Merib, J. Membrane-based Microextraction Techniques in Analytical Chemistry: A Review. Anal. Chim. Acta. 2015, 880, 8–25. DOI: 10.1016/j.aca.2015.02.049.
  • Sharifi, V.; Abbasi, A.; Nosrati, A. Application of Hollow Fiber Liquid Phase Microextraction and Dispersive Liquid–liquid Microextraction Techniques in Analytical Toxicology. J. Food Drug Anal. 2016, 24, 264–276. DOI: 10.1016/j.jfda.2015.10.004.
  • Kjelsen, I. J.; Gjelstad, A.; Rasmussen, K. E.; Pedersen-Bjergaard, S. Low-voltage Electromembrane Extraction of Basic Drugs from Biological Samples. J. Chromatogr. A. 2008, 1180, 1–9. DOI: 10.1016/j.chroma.2007.12.006.
  • Basheer, C.; Lee, J.; Pedersen-Bjergaard, S.; Rasmussen, K. E.; Lee, H. K. Simultaneous Extraction of Acidic and Basic Drugs at Neutral Sample pH a Novel Electro-mediated Microextraction Approach. J. Chromatogr. A 2010, 1217, 6661–6667. DOI: 10.1016/j.chroma.2010.04.066.
  • Petersen, N. J.; Rasmussen, K. E.; Pedersen-Bjergaard, S.; Gjelstad, A. Electromembrane Extraction from Biological Fluids. Anal. Sci. 2011, 27, 965–972. DOI: 10.2116/analsci.27.965
  • Thurman, E. M.; Mills, M. S. Solid-phase Extraction Principles and Practice; John Wiley & Sons: New York, USA, 1998.
  • Hennion, M. C. Solid-phase Extraction Method Development, sorbents and Coupling with Liquid Chromatography. J. Chromatogr. A 1999, 856, 3–54. DOI: 10.1016/S0021-9673(99)00832-8.
  • Poole, C. F.; Gunatilleka, A. D.; Sethuraman, R. Contributions of Theory to Method Development in Solid-phase Extraction. J. Chromatogr. A 2000, 885, 17–39. DOI: 10.1016/S0021-9673(00)00224-7.
  • Pichon, V. Solid-phase Extraction for Multiresidue Analysis of Organic Contaminants in Water. J. Chromatogr. A 2000, 885, 195–215. DOI: 10.1016/S0021-9673(00)00456-8.
  • Nakamura, M.; Nakamura, M.; Yamada, S. Conditions for Solid-phase Extraction of Agricultural Chemicals in Waters by Using n-octanol-water Partition Coefficients. Analyst. 1996, 121, 469–475. DOI: 10.1039/AN9962100469.
  • Doumanidis, C. C. Nanomanufacturing of Random Branching Material Architectures. Microelectron. Eng. 2009, 86, 467–478. DOI: 10.1016/j.mee.2009.02.024.
  • Hennion, M. C. Graphitized Carbons for Solid-phase Extraction. J. Chromatogr. A. 2000, 885, 73–95. DOI: 10.1016/S0021-9673(00)00085-6
  • Martín-Esteban, A. Molecularly-imprinted Polymers as a Versatile Highly Selective Tool in Sample Preparation. Trends Analyt. Chem. 2013, 45, 169–181. DOI: 10.1016/j.trac.2012.09.023.
  • Wen, Y.; Chen, L.; Li, J.; Liu, D.; Chen, L. Recent Advances in Solid-phase Sorbents for Sample Preparation Prior to Chromatographic Analysis. Trends Analyt. Chem. 2014, 59, 26–41. DOI: 10.1016/j.trac.2014.03.011.
  • Huang, D. L.; Wang, R. Z.; Liu, Y. G.; Zeng, G. M.; Lai, C.; Xu, P.; Lu, B. A.; Xu, J.; Wang, C.; Huang, C. Application of Molecularly Imprinted Polymers in Wastewater Treatment: A Review. Environ. Sci. Pollut. Res. Int. 2015, 22, 963–977. DOI: 10.1007/s11356-014-3599-8.
  • Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular Imprinting: Perspectives and Applications. Chem. Soc. Rev. 2016, 45, 2137–2211. DOI: 10.1039/c6cs00061d.
  • Cheong, W. J.; Yang, S. H.; Ali, F. Molecular Imprinted Polymers for Separation Science: A Review of Reviews. J. Sep. Sci. 2013, 36, 609–628. DOI: 10.1002/jssc.201200784.
  • He, J.; Lv, R.; Zhan, H.; Wang, H.; Cheng, J.; Lu, K.; Wang, F. Preparation and Evaluation of Molecularly Imprinted Solid-phase Micro-extraction Fibers for Selective Extraction of Phthalates in an Aqueous Sample. Anal. Chim. Acta. 2010, 674, 53–58. DOI: 10.1016/j.aca.2010.06.018
  • Mohajeri, S. A.; Hosseinzadeh, H.; Keyhanfar, F.; Aghamohammadian, J.; Hosseinzadeh, H.; Keyhanfar, F.; Aghamohammadian, J. Extraction of Crocin from Saffron (Crocus Sativus) Using Molecularly Imprinted Polymer Solid-phase Extraction. J. Sep. Sci. 2010, 33, 2302–2309. DOI: 10.1002/jssc.201000183
  • Hugon-Chapuis, F.; Mullot, J. U.; Tuffal, G.; Hennion, M. C.; Pichon, V. Selective and Automated Sample Pretreatment by Molecularly Imprinted Polymer for the Analysis of the Basic Drug Alfuzosin from Plasma. J. Chromatogr. A 2008, 1196–1197, 73–80. DOI: 10.1016/j.chroma.2008.04.038.
  • Sellergren, B. Polymer and Template-related Factors Influencing the Efficiency in Molecularly Imprinted Solid Phase Extractions. Trends Anal. Chem. 1999, 18, 164–174. DOI: 10.1016/S0165-9936(98)00117-4.
  • Chapuis, F.; Pichon, V.; Lanza, F.; Sellergren, B.; Hennion, M. C. Optimization of the Class-selective Extraction of Triazines from Aqueous Samples Using a Molecularly Imprinted Polymer by a Comprehensive Approach of the Retention Mechanism. J. Chromatogr. A 2003, 999, 23–33. DOI: 10.1016/S0021-9673(03)00552-1.
  • Cacho, C.; Turiel, E.; Martín-Esteban, A.; Ayala, D.; Pérez-Conde, C. Semi-covalent Imprinted Polymer Using Propazine Methacrylate as Template Molecule for the Cleanup of Triazines in Soil and Vegetable Samples. J. Chromatogr. A 2006, 1114, 255–262. DOI: 10.1016/j.chroma.2006.02.051.
  • Caro, E.; Marce, R. M.; Cormack, P. A. G.; Sherrington, D. C.; Borrull, F. Novel Enrofloxacin Imprinted Polymer Applied to the Solid-phase Extraction of Fluorinated Quinolones from Urine and Tissue Samples. Anal. Shim. Acta. 2006, 562, 145–151. DOI: 10.1016/j.aca.2006.01.080.
  • Carabias-Martinez, R.; Rodriguez-Gonzalo, E.; HerreroHernandez, E. Behavior of Triazine Herbicides and Their Hydroxylated and Dealkylated Metabolites on a Propazine-imprinted Polymer Comparative Study in Organic and Aqueous Media. Anal. Shim. Acta. 2006, 559, 186–194.
  • Sambe, H.; Hoshina, k.; Haginaka, J. Molecularly Imprinted Polymers for Triazine Herbicides Prepared by Multi-step Swelling and Polymerization Method Their Application to the Determination of Methylthiotriazine Herbicides in River Water. J. Chromatogr. A 2007, 1152, 130–137. DOI: 10.1016/j.chroma.2006.09.003.
  • Beltran, A.; Caro, E.; Marce, R. M.; Cormack, P. A. G.; Sherrington, D. C.; Borrull, F. Synthesis and Application of a Carbamazepine-imprinted Polymer for Solid-phase Extraction from Urine and Wastewater. Anal. Shim. Acta. 2007, 597, 6–11. DOI: 10.1016/j.aca.2007.06.040.
  • Koohpaei, A. R.; Shahtaheri, S. J.; Ganjali, M. R.; Forushani, A. R.; Golbabaei, F. Molecular Imprinted Solid Phase Extraction for Determination of Atrazine in Environmental Samples. Iran. J. Environ. Health. Sci. Eng. 2008, 5, 283–296.
  • Rahiminejad, M.; Shahtaheri, S. J.; Ganjali, M. R.; Forushani, A.; Golbabaei, R. F. Molecularly Imprinted Solid Phase Extraction for Trace Analysis of Diazinon in Drinking Water. Iran. J. Environ. Health. Sci. Eng. 2009, 6, 97–106.
  • Feng, Q.-Z.; Zhao, L.-X.; Yan, W.; Lin, J.-M.; Zheng, Z.-X. Molecularly Imprinted Solid-phase Extraction Combined with High Performance Liquid Chromatography for Analysis of Phenolic Compounds from Environmental Water Samples. J. Hazar. Mater. 2009, 167, 282–288. DOI: 10.1016/j.jhazmat.2008.12.115.
  • Namera, A.; Nakamoto, A.; Nishida, M.; Saito, T.; Kishiyama, I.; Miyazaki, S.; Yahata, M.; Yashiki, M.; Nagao, M. Extraction of Amphetamines and Methylenedioxyamphetamines from Urine Using a Monolithic Silica Disk-packed Spin Column and High-performance Liquid Chromatography-diode Array Detection. J. Chromatogr. A 2008, 1208, 71–75. DOI: 10.1016/j.chroma.2008.08.091.
  • Saito, T.; Yamamoto, R.; Inoue, S.; Kishiyama, I.; Miyazaki, S.; Nakamoto, A.; Nishida, M.; Namera, A.; Inokuchi, S. Simultaneous Determination of Amitraz and Its Metabolite in Human Serum by Monolithic Silica Spin Column Extraction and Liquid Chromatography-mass Spectrometry. J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci. 2008, 867, 99–104. DOI: 10.1016/j.jchromb.2008.03.018.
  • Shintani, Y.; Zhou, X.; Furuno, M.; Minakuchi, H.; Nakanishi, K. Monolithic Silica Column for in Tube Solid-phase Microextraction Coupled to High Performance Liquid Chromatography. J. Chromatogr. A 2003, 985, 351–357. DOI: 10.1016/S0021-9673(02)01447-4.
  • Saito, T.; Yamamoto, R.; Inoue, S.; Kishiyama, I.; Miyazaki, S.; Nakamoto, A.; Nishida, M.; Namera, A.; Inokuchi, S. Simutaneous Determination of Amitrz and Its Metabolite in Human Serum by Monolithic Silica Spin Column Extraction and Liquid Chromatography-mass Spectrometry. J. Chromatogr. B. 2008, 867, 99–104. DOI: 10.1016/j.jchromb.2008.03.018.
  • Nakamoto, A.; Nishida, M.; Saito, T.; Kishiyama, I.; Miyazaki, S.; Murakami, K.; Nagao, M.; Namura, A. Monolithic Silica Spin Column Extraction and Simultaneous Derivatisation of Amphetamines and 3,4-methylenedioxyamphetamines in Human Urine for Gas Chromatographic-mass Spectrometric Detection. Anal. Chim. Acta. 2010, 661, 42–46. DOI: 10.1016/j.aca.2009.12.013.
  • Lu, L.; Hashi, Y.; Wang, Z. H.; Ma, Y.; Lin, J. M. Determination of Phthalate Esters in Physiological Saline Solution by Monolithic Silica Spin Column Extraction Method. J. Pharm. Anal 2011, 1, 92–99. DOI: 10.1016/S2095-1779(11)70016-8.
  • Namera, A.; Nakamoto, A.; Saito, T.; Miyazaki, S. Monolith as a New Sample Preparation material: Recent Devices and Applications. J. Sep. Sci. 2011, 34, 901–924. DOI: 10.1002/jssc.201000795.
  • Namera, A.; Miyazaki, S.; Saito, T.; Nakamoto, A. Monolithic Silica with HPLC Separation and Solid Phase Extraction Materials for Determination of Drugs in Biological Materials. Anal. Methods. 2011, 3, 2189–2200. DOI: 10.1039/c1ay05243h.
  • Namera, A.; Saito, T. Advances in Monolithic Materials for Sample Preparation in Drug and Pharmaceutical Analysis. Trends. Analyt. Chem. 2013, 45, 182–196. DOI: 10.1016/j.trac.2012.10.017.
  • Namera, A.; Saito, T. Spin Column Extraction as a New Sample Preparation Method in Bioanalysis. Bioanal. 2015, 7, 2171–2176. DOI: 10.4155/bio.15.146.
  • Barker, S. A.; Long, A. R.; Short, C. R. Isolation of Drug Residues from Tissues by Solid Phase Dispersion. J. Chromatogr. A 1989, 475, 353–361. DOI: 10.1016/S0021-9673(01)89689-8.
  • Barker, S. A. Matrix Solid-phase Dispersion. J. Chromatogr. A 2000, 885, 115–127.
  • Barker, S. A. Matrix Solid Phase Dispersion (MSPD). J. Biochem. Biophys. Methods. 2007, 70, 151–162. DOI: 10.1016/j.jbbm.2006.06.005.
  • Kristenson, E. M.; Ramos, L.; Brinkman, U. A. Recent Advances in Matrix Solid-phase Dispersion. Trends. Analyt. Chem. 2006, 2, 96–111. DOI: 10.1016/j.trac.2005.05.011.
  • Capriotti, A. L.; Cavaliere, C.; Foglia, P.; Samperi, R.; Stampachiacchiere, S.; Ventura, S.; Lagana, A. Recent Advances and Developments in Matrix Solid-phase Dispersion. Trends. Analyt. Chem. 2015, 71, 186–193. DOI: 10.1016/j.trac.2015.03.012.
  • Aznar, R.; Albero, B.; Brunete, C. S.; Miguel, E.; Girela, I. M.; Tadeo, J. L. Simultaneous Determination of Multiclass Emerging Contaminants in Aquatic Plants by Ultrasound-assisted Matrix Solid-phase Dispersion and GC-MS. Environ. Sci. Pollut. Res. 2017, 24, 7911–7920. DOI: 10.1007/s11356-016-6327-8.
  • Li, J.; Li, Y.; Xu, D.; Zhang, J.; Wang, Y.; Luo, C. Determination of Metrafenone in Vegetables by Matrix Solid-phase Dispersion and HPLC-UV Method. Food Chem. 2017, 214, 77–81. DOI: 10.1016/j.foodchem.2016.07.061.
  • Chen, Q.; Yao Lin, Y.; Tian, Y.; Wu, L.; Yang, L.; Hou, X.; Zheng, C. Single-Drop Solution Electrode Discharge-Induced Cold Vapor Generation Coupling to Matrix Solid-Phase Dispersion: A Robust Approach for Sensitive Quantification of Total Mercury Distribution in Fish. Anal. Chem. 2017, 89, 2093–2100. DOI: 10.1021/acs.analchem.6b04753.
  • Anastassiades, M.; Lehotay, S. J.; Stajnbaher, D.; Schenck, F. J. (Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/partitioning and Dispersive Solid-phase Extraction for the Determination of Pesticide Residues in Produce. J. AOAC. Int. 2003, 86, 412–431.
  • Wu, X.; Hong, H.; Liu, X.; Guan, W.; Meng, L.; Ye, Y.; Ma, Y. Graphene-dispersive Solid-phase Extraction of Phthalate Acid Esters from Environmental Water. Sci. Total Environ. 2013, 444, 224–230. DOI: 10.1016/j.scitotenv.2012.11.060.
  • Curbelo, M. A. G.; Herrera, A. V. H.; Borges, J. H.; Delgado, M. A. R. Analysis of Pesticides Residues in Environmental Water Samples Using Multiwalled Carbon Nanotubes Dispersive Solid-phase Extraction. J. Sep. Sci. 2013, 36, 556–563. DOI: 10.1002/jssc.201200782.
  • Omar, M. M.; Ibrahim, W. A. W.; Elbashir, A. A. Sol-gel Hybrid Methyltrimethoxysilane- tetraethoxysilane as a New Dispersive Solid-phase Extraction Material for Acrylamide Determination in Food with Direct Gas Chromatography-mass Spectrometry Analysis. Food Chem. 2014, 158, 302–309. DOI: 10.1016/j.foodchem.2014.02.045.
  • Fernandes, V. C.; Domingues, V. F.; Mateus, N.; Matos, C. D. Determination of Pesticides in Fruit and Fruit Juices by Chromatographic Methods. An Overview. J. Chromatogr. Sci. 2011, 49, 715–730. DOI: 10.1093/chrsci/49.9.715.
  • Tadeo, J. L.; Perez, R. A.; Albero, B.; Valcarcel, A. I. G.; Brunete, C. S. Review of Sample Preparation Techniques for the Analysis of Pesticide Residues in Soil. J. AOAC Int. 2012, 95, 1258–1271. DOI: 10.5740/jaoacint.SGE_Tadeo.
  • Bruzzoniti, M. C.; Checchini, L.; De-Carlo, R. M.; Orlandini, S.; Rivoira, L.; Bubba, M. D. Quechers Sample Preparation for the Determination of Pesticides and Other Organic Residues in Environmental Matrices. A Critical Review. Anal. Bioanal. Chem. 2014, 406, 4089–4116. DOI: 10.1007/s00216-014-7798-4.
  • Curbelo, M. A. G.; Rodríguez, B. S.; Herrera, A. V. H.; Salamo, J. G.; Borges, J. H.; Delgado, M. A. R. Evolution and Applications of the Quencher’s Method. Trends Analyt. Chem. 2015, 71, 169–185. DOI: 10.1016/j.trac.2015.04.012.
  • Plossl, F.; Giera, M.; Bracher, F. Multiresidue Analytical Method Using Dispersive Solid-phase Extraction and Gas Chromatography/ion Trap Mass Spectrometry to Determine Pharmaceuticals in Whole Blood. J. Chromatogr. A 2006, 1135, 19–26. DOI: 10.1016/j.chroma.2006.09.033.
  • Usui, K.; Hayashizaki, Y.; Hashiyada, M.; Funayama, M. Rapid Drug Extraction from Human Whole Blood Using a Modified Quenchers Extraction Method. Leg. Med. Tokyo 2012, 14, 286–296. DOI: 10.1016/j.legalmed.2012.04.008.
  • Anzillotti, L.; Odoardi, S.; Rossi, S. S. Cleaning up Blood Samples Using a Modified Quenchers Procedure for the Determination of Drugs of Abuse and Benzodiazepines by UPLC-MSMS(?). Forensic Sci. Int. 2014, 243, 99–106. DOI: 10.1016/j.forsciint.2014.05.005.
  • Wu, Q.; Wang, C.; Liu, Z.; Wu, C.; Zeng, X.; Wen, J.; Wang, Z. Dispersive Solid-phase Extraction Followed by Dispersive Liquid-liquid Microextraction for the Determination of Some Sulfonylurea Herbicides in Soil by High-performance Liquid Chromatography. J. Chromatogr. A 2009, 1216, 5504–5510. DOI: 10.1016/j.chroma.2009.05.062.
  • Zhao, Y.; Xu, L. Dispersive Solid-phase Extraction Based on Mesoporous Melamine-formaldehyde Polymer for Sensitive Determination of Five Chlorinated Herbicides Residues in Water by High-performance Liquid Chromatography. Int. J. Environ. Analy. Chem. 2018, 98, 1331–1341. DOI: 10.1080/03067319.2018.1548618.
  • Brewer, W. E. Disposable Pipette Extraction. US. Patent 2003, 6, 566, 145.
  • Guan, H.; Brewer, W. E.; Garris, S. T.; Morgan, S. L. Disposable Pipette Extraction for the Analysis of Pesticides in Fruit and Vegetables Using Gas Chromatography/mass Spectrometry. J. Chromatogr. A 2010, 1217, 1867–1874. DOI: 10.1016/j.chroma.2010.01.047.
  • Schroeder, J. L.; Marinetti, L. J.; Smith, R. K.; Brewer, W. E.; Clelland, B. L.; Morgan, S. L. The Analysis of delta9-tetrahydrocannabinol and Metabolite in Whole Blood and 11-nor-delt- 9-tetrahydrocannabinol-9-carboxylic Acid in Urine Using Disposable Pipette Extraction with Confirmation and Quantification by Gas Chromatography-mass Spectrometry. J. Anal. Toxicol. 2008, 32, 659–666. DOI: 10.1093/jat/32.8.659.
  • Ellison, S. T.; Brewer, W. E.; Morgan, S. L. Comprehensive Analysis of Drugs of Abuse in Urine Using Disposable Pipette Extraction. J. Anal. Toxicol. 2009, 33, 356–365. DOI: 10.1093/jat/33.7.356.
  • Samanidou, V.; Stathatos, C.; Njau, S.; Kovatsi, L. Disposable Pipette Extraction for the Simultaneous Determination of Biperiden and Three Antipsychotic Drugs in Human Urine by GC-nitrogen Phosphorus Detection. Bioanalysis. 2013, 5, 21–29. DOI: 10.4155/bio.12.292.
  • Bordin, D. C. M.; Alves, M. N.; Cabrices, O. G.; De-Campos, E. G.; De-Martinis, B. S. A Rapid Assay for the Simultaneous Determination of Nicotine, Cocaine and Metabolites in Meconium Using Disposable Pipette Extraction and Gas Chromatography-mass Spectrometry (GC-MS). J. Anal. Toxicol. 2014, 38, 31–38. DOI: 10.1093/jat/bkt092.
  • Bordin, D. C.; Alves, M. N.; De-Campos, E. G.; De-Martinis, B. S. Disposable Pipette Tips Extraction Fundamentals Applications and State of the Art. J. Sep. Sci. 2016, 39, 1168–1172. DOI: 10.1002/jssc.201500932.
  • Scheidweiler, K. B.; Newmeyer, M. N.; Barnes, A. J.; Huestis, M. A. Quantification of Cannabinoids and Their Free and Glucuronide Metabolites in Whole Blood by Disposable Pipette Extraction and Liquid Chromatography-tandem Mass Spectrometry. J. Chromatogr. A 2016, 1453, 34–42. DOI: 10.1016/j.chroma.2016.05.024.
  • Safarikovaa, M.; Safarík, I. Magnetic Solid-phase Extraction. J. Magn. Mater. 1999, 194, 108–112.
  • Giakisikli, G.; Anthemidis, A. N. Magnetic Materials as Sorbents for Metal/metalloid Preconcentration and/or Separation. A Review. Anal. Chim. Acta. 2013, 789, 1–16. DOI: 10.1016/j.aca.2013.04.021.
  • Wierucka, M.; Biziuk, M. Application of Magnetic Nanoparticles for Magnetic Solid-phase Extraction in Preparing Biological Environmental and Food Samples. Trends Analyt. Chem. 2014, 59, 50–58. DOI: 10.1016/j.trac.2014.04.007.
  • Kaur, R.; Hasan, A.; Iqbal, N.; Alam, S.; Saini, M. K.; Raza, S. K. Synthesis and Surface Engineering of Magnetic Nanoparticles for Environmental Cleanup and Pesticide Residue Analysis: a Review. J. Sep. Sci. 2014, 37, 1805–1825. DOI: 10.1002/jssc.201400256.
  • Latorre, C. H.; Garcia, J. B.; Martín, S. G.; Crecente, R. M. P.; Jimenez, O. J. Magnetic Solid-phase Extraction Using Carbon Nanotubes as Sorbents: A Review. Anal. Chim. Acta. 2015, 892, 10–26.
  • Ibarra, I. S.; Rodriguez, J. A.; Miranda, J. M.; Vega, M.; Barrado, E. Magnetic Solid Phase Extraction Based on Phenyl Silica Adsorbent for the Determination of Tetracyclines in Milk Samples by Capillary Electrophoresis. J. Chromatogr. A 2011, 1218, 2196–2202. DOI: 10.1016/j.chroma.2011.02.046.
  • He, Z.; Liu, D.; Li, R.; Zhou, Z.; Wang, P. Magnetic Solid-phase Extraction of Sulfonylurea Herbicides in Environmental Water Samples by Fe3O4@dioctadecyl Dimethyl Ammonium Chloride@silica Magnetic Particles. Anal. Chim. Acta. 2012, 747, 29–35. DOI: 10.1016/j.aca.2012.08.015.
  • Zhang, N.; Peng, H.; Wang, S.; Hu, B. Fast and Selective Magnetic Solid Phase Extraction of Trace Cd, Mn and Pb in Environmental and Biological Samples and Their Determination by ICP-MS. Microchim. Acta. 2011, 175, 121–128. DOI: 10.1007/s00604-011-0659-3.
  • Gao, Q.; Luo, D.; Bai, M.; Chen, Z. W.; Feng, Y. Q. Rapid Determination of Estrogens in Milk Samples Based on Magnetite Nanoparticles/polypyrrole Magnetic Solid-phase Extraction Coupled with Liquid Chromatography-tandem Mass Spectrometry. J. Agric. Food Chem. 2011, 59, 8543–8549. DOI: 10.1021/jf201372r.
  • Yu, X.; Yang, H. Pyrethroid Residue Determination in Organic and Conventional Vegetables Using Liquid-solid Extraction Coupled with Magnetic Solid Phase Extraction Based on Polystyrene-coated Magnetic Nanoparticles. Food Chem. 2017, 217, 303–310. DOI: 10.1016/j.foodchem.2016.08.115.
  • Chen, X.; Ding, N.; Zang, H.; Yeung, H.; Zhao, R. S.; Cheng, C.; Liu, J.; Chan, T. W. D. Fe3O4@MOF Core-shell Magnetic Microspheres for Magnetic Solid-phase Extraction of Polychlorinated Biphenyls from Environmental Water Samples. J. Chromatogr. A 2013, 1304, 241–245. DOI: 10.1016/j.chroma.2013.06.053.
  • Belardi, R. P.; Pawliszyn, J. The Application of Chemically Modified Fused Silica Fibers in the Extraction of Organics from Water Matrix Samples and Their Rapid Transfer to Capillary Columns. Water Pollut. Res. J. Can. 1989, 24, 179–191.
  • Arthur, C. L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148. DOI: 10.1021/ac00218a019.
  • Pawliszyn, J. Ed Solid Phase Microextraction Theory and Practice; Wiley-VCH: New York, USA, 1997.
  • Jelen, H. H.; Wlazly, K.; Wasowicz, E.; Kaminski, E. Solid-phase Microextraction for the Analysis of Some Alcohols and Esters in Beer: Comparison with Static Headspace Method. J. Agric. Food. Chem. 1998, 46, 1469–1473. DOI: 10.1021/jf9707290
  • Xu, J.; Zheng, J.; Tian, J.; Zhu, F.; Zeng, F.; Su, C.; Ouyang, G. New Materials in Solid-phase Microextraction. Trends. Analyt. Chem 2013, 47, 68–83. DOI: 10.1016/j.trac.2013.02.012.
  • Queiroz, M. E.; Melo, L. P. Selective Capillary Coating Materials for in-tube Solid-phase Microextraction Coupled to Liquid Chromatography to Determine Drugs and Biomarkers in Biological Samples: a Review. Anal. Chim. Acta. 2014, 826, 1–11. DOI: 10.1016/j.aca.2014.03.024.
  • Aziz-Zanjani, M. O.; Mehdinia, A. A Review on Procedures for the Preparation of Coatings for Solid Phase Microextraction. Microchim. Acta. 2014, 181, 1169–1190. DOI: 10.1007/s00604-014-1265-y.
  • Pawliszyn, J. Ed. Applications of Solid Phase Microextraction; Royal Society of Chemistry: Cambridge, UK, 1999.
  • Pragst, F. Application of Solid-phase Microextraction in Analytical Toxicology. Anal. Bioanal. Chem. 2007, 388, 1393–1414. DOI: 10.1007/s00216-007-1289-9.
  • Musteata, M. L.; Musteata, F. M. Analytical Methods Used in Conjunction with Solid-phase Microextraction a Review of Recent Bioanalytical Applications. Bioanalysis. 2009, 1, 1081–1102. DOI: 10.4155/bio.09.88.
  • Kumar, A.; Malik, A. K.; Matysik, F. M. Analysis of Biological Samples Using Solid-phase Microextraction. Bioanal. Rev. 2009, 1, 35–55. DOI: 10.1007/s12566-009-0004-z.
  • Kataoka, H. Recent Developments and Applications of Microextraction Techniques in Drug Analysis. Anal. Bioanal. Chem. 2010, 396, 339–364. DOI: 10.1007/s00216-009-3076-2.
  • Farhadi, K.; Hatami, M.; Matin, A. A. Microextraction Techniques in Therapeutic Drug Monitoring. Biomed. Chromatogr. 2012, 26, 972–989. DOI: 10.1002/bmc.2774
  • Abdulra'uf, L. B.; Chai, M. K.; Tan, G. H. Applications of Solid-phase Microextraction for the Analysis of Pesticide Residues in Fruits and Vegetables: A Review. J. AOAC Int. 2012, 95, 1272–1290. DOI: 10.1080/10408347.2011.632315.
  • Kohler, I.; Schappler, J.; Rudaz, S. Microextraction Techniques Combined with Capillary Electrophoresis in Bioanalysis. Anal. Bioanal. Chem. 2013, 405, 125–141. DOI: 10.1007/s00216-012-6367-y.
  • Merkle, S.; Kleeberg, K. K.; Fritsche, J. Recent Developments and Applications of Solid Phase Microextraction (SPME) in Food and Environmental Analysis. A Rev. Chromat. 2015, 2, 293–381. DOI: 10.3390/chromatography2030293.
  • Eisert, R.; Pawliszyn, J. Automated in-tube Solid-phase Microextraction Coupled to High-performance Liquid Chromatography. Anal. Chem. 1997, 69, 3140–3147. DOI: 10.1021/ac970319a.
  • Kataoka, H. Automated Sample Preparation Using in-tube Solid-phase Microextraction and Its Application: A Review. Anal. Bioanal. Chem. 2002, 373, 31–45. DOI: 10.1007/s00216-002-1269-z.
  • Kataoka, H.; Ishizaki, A.; Nonaka, Y.; Saito, K. Developments and Applications of Capillary Microextraction Techniques: A Review. Anal. Chim. Acta. 2009, 655, 8–29. DOI: 10.1016/j.aca.2009.09.032.
  • Rasanen, I.; Viinamäki, J.; Vuori, E.; Ojanperä, I. Headspace in-tube Extraction Gas Chromatography- mass Spectrometry for the Analysis of Hydroxylic Methyl-derivatized and Volatile Organic Compounds in Blood and Urine. J. Anal. Toxico. 2010, 34, 113–121. DOI: 10.1093/jat/34.3.113.
  • Campíns-Falcó, P.; Verdú-Andrés, J.; Sevillano-Cabeza, A.; Herráez-Hernández, R.; Molins-Legua, C.; Moliner-Martinez, Y. In-tube Solid-phase Microextraction Coupled by in Valve Mode to Capillary LC-DAD: Improving Detectability to Multiresidue Organic Pollutants Analysis in Several Whole Waters. J. Chromatogr. A 2010, 1217, 2695–2702. DOI: 10.1016/j.chroma.2010.01.018.
  • Musteata, F. M.; Musteata, M. L.; Pawliszyn, J. Fast in Vivo microextraction: a new tool for clinical analysis. Clin. Chem. 2006, 52, 708–715. DOI: 10.1373/clinchem.2005.064758.
  • Cudjoe, E.; Bojko, B.; Togunde, P.; Pawliszyn, J. In Vivo Solid-phase Microextraction for Tissue Bioanalysis. Bioanalysis 2012, 4, 2605–2619. DOI: 10.4155/bio.12.250.
  • Bojko, B.; Pawliszyn, J. In Vivo and Ex Vivo SPME a Low Invasive Sampling and Sample Preparation Tool in Clinical Bioanalysis. Bioanalysis 2014, 6, 1227–1239. DOI: 10.4155/bio.14.91.
  • Xie, W.; Mullett, W. M.; Miller-Stein, C. M.; Pawliszyn, J. Automation of in-tip Solid-phase Microextraction in 96-well Format for the Determination of a Model Drug Compound in Human Plasma by Liquid Chromatography with Tandem Mass Spectrometric Detection. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2009, 877, 415–420. DOI: 10.1016/j.jchromb.2008.12.036.
  • Xie, W.; Chavez-Eng, C. M.; Fang, W.; Constanzer, M. L.; Matuszewski, B. K.; Mullett, W. M.; Pawliszyn, J. Quantitative Liquid Chromatographic and Tandem Mass Spectrometric Determination of Vitamin D3 in Human Serum with Derivatization a Comparison of in-tube LLE 96-well Plate LLE and in-tip SPME. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 1457–1466. DOI: 10.1016/j.jchromb.2011.03.018.
  • Xie, W.; Mullett, W.; Pawliszyn, J. High-throughput Polymer Monolith in-tip SPME Fiber Preparation and Application in Drug Analysis. Bioanalysis 2011, 3, 2613–2625. DOI: 10.4155/bio.11.267.
  • Es-Haghi, A.; Zhang, X.; Musteata, F. M.; Bagheri, H.; Pawliszyn, J. Evaluation of Bio-compatible Poly(ethylene Glycol)-Based Solid-phase Microextraction Fiber for in Vivo Pharmacokinetic Studies of Diazepam in Dogs. Analyst. 2007, 132, 672–678. DOI: 10.1039/b701423f.
  • Vuckovic, D.; Cudjoe, E.; Hein, D.; Pawliszyn, J. Automation of Solid-phase Microextraction in High-throughput Format and Applications to Drug Analysis. Anal. Chem. 2008, 80, 6870–6880. DOI: 10.1021/ac800936r.
  • Mirnaghi, F. S.; Chen, Y.; Sidisky, L. M.; Pawliszyn, J. Optimization of the Coating Procedure for a High-throughput 96-blade Solid Phase Microextraction System Coupled with LC-MS/MS for Analysis of Complex Samples. Anal. Chem. 2011, 83, 6018–6025. DOI: 10.1021/ac2010185.
  • Ouyang, G.; Pawliszyn, J. Recent Developments in SPME for on-site. Analysis and Monitoring. TrAC-Trends Anal. Chem. 2010, 7, 692–703. DOI: 10.1016/j.trac.2006.05.005.
  • Feng, J.; Sun, M.; Xu, L.; Li, J.; Liu, X.; Jiang, S. Preparation of a Polymeric Ionic Liquid-coated Solid-phase Microextraction Fiber by Surface Radical Chain-transfer Polymerization with Stainless Steel Wire as Support. J. Sep. Sci. 2011, 34, 1–7. DOI: 10.1016/j.chroma.2011.08.076
  • Abdel-Rehim, M. New Trend in Sample Preparation: on-line Microextraction in Packed Syringe for Liquid and Gas Chromatography Applications I Determination of Local Anaesthetics in Human Plasma Samples Using Gas Chromatography-mass Spectrometry. J Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 801, 317–321. DOI: 10.1016/j.jchromb.2003.11.042.
  • Abdel-Rehim, M. Recent Advances in Microextraction by Packed Sorbent for Bioanalysis. J. Chromatogr. A. 2010, 1217, 2569–2580. DOI: 10.1016/j.chroma.2009.09.053.
  • Blomberg, L. G. Two New Techniques for Sample Preparation in Bioanalysis: Microextraction in Packed Sorbent (MEPS) and Use of a Bonded Monolith as Sorbent for Sample Preparation in Polypropylene Tips for 96-well Plates. Anal. Bioanal. Chem. 2009, 393, 797–807. DOI: 10.1007/s00216-008-2305-4.
  • Rani, S.; Malik, A. K. A Novel Microextraction by Packed Sorbent-gas Chromatography Procedure for the Simultaneous Analysis of Antiepileptic Drugs in Human Plasma and Urine. J. Sep. Sci. 2012, 35, 2970–2977. DOI: 10.1002/jssc.201200439.
  • Alves, G.; Rodrigues, M.; Fortuna, A.; Falcão, A.; Queiroz, J. A. critical Review of Microextraction by Packed Sorbent as a Sample Preparation Approach in Drug Bioanalysis. Bioanalysis. 2013, 5, 1409–1442. DOI: 10.4155/bio.13.92.
  • Moein, M. M.; Abdel-Rehim, A.; Abdel-Rehim, M. Microextraction by Packed Sorbent (MEPS). Trends Analyt. Chem. 2015, 67, 34–44. DOI: 10.1016/j.trac.2014.12.003.
  • Moein, M. M.; Said, R.; Abdel-Rehim, M. Microextraction by Packed Sorbent. Bioanalysis 2015, 7, 2155–2161. DOI: 10.4155/bio.15.154.
  • Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir Bar Sorptive Extraction (SBSE) a Novel Extraction Technique for Aqueous Samples Theory and Principles. J. Micro. Sep. 1999, 11, 737–747. DOI: 10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4.
  • Huang, X.; Qiu, N.; Yuan, D. Direct Enrichment of Phenols in Lake and Sea Water by Stir Bar Sorptive Extraction Based on Poly (vinylpyridine-ethylene Dimethacrylate) monolithic Material and Liquid Chromatographic Analysis. J. Chromatogr. A 2008, 1194, 134–138. DOI: 10.1016/j.chroma.2008.04.030.
  • Hayasaka, Y.; Namara, K.; Baldock, G. A.; Taylor, R. L.; Pollnitz, A. P. Application of Stir Bar Sorptive Extraction for Wine Analysis. Anal. Bioanal. Chem. 2003, 375, 948–955. DOI: 10.1007/s00216-003-1837-x.
  • Kawaguchi, M.; Ito, R.; Saito, K.; Nakazawa, H. Novel Stir Bar Sorptive Extraction Methods for Environmental and Biomedical Analysis. J. Pharm. Biomed. Anal. 2006, 40, 500–508. DOI: 10.1016/j.jpba.2005.08.029.
  • Lancas, F. M.; Queiroz, M. E.; Grossi, P.; Olivares, I. R. Recent Developments and Applications of Stir Bar Sorptive Extraction. J. Sep. Sci. 2009, 32, 813–824. DOI: 10.1002/jssc.200800669.
  • Sanchez-Rojas, F.; Bosch-Ojeda, C.; Cano-Pavon, J. M. A Review of Stir Bar Sorptive Extraction. Chroma. 2009, 69, 79–94. DOI: 10.1365/s10337-008-0687-2.
  • Prieto, A.; Basauri, O.; Rodil, R.; Usobiaga, A.; Fernández, L. A.; Etxebarria, N.; Zuloaga, O. Stir-bar Sorptive Extraction a View on Method Optimisation Novel Applications, limitations and Potential Solutions. J. Chromatogr. A 2010, 1217, 2642–2666. DOI: 10.1016/j.chroma.2009.12.051.
  • Soini, H. A.; Klouckova, I.; Wiesler, D.; Oberzaucher, E.; Grammer, K.; Dixon, S. J.; Xu, Y.; Brereton, R. G.; Penn, D. J.; Novotny, M. V. Analysis of Volatile Organic Compounds in Human Saliva by a Static Sorptive Extraction Method and Gas Chromatography-mass Spectrometry. J. Chem. Ecol. 2010, 36, 1035–1042. DOI: 10.1007/s10886-010-9846-7.
  • Kawaguchi, M.; Takatsu, A.; Ito, R.; Nakazawa, H. Applications of Stir-bar Sorptive Extraction to Food Analysis. Trends Analyt. Chem. 2013, 45, 280–293. DOI: 10.1016/j.trac.2013.01.007.
  • Assoumani, A.; Lissalde, S.; Margoum, C.; Mazzella, N.; Coquery, M. In Situ Application of Stir Bar Sorptive Extraction as a Passive Sampling Technique for the Monitoring of Agricultural Pesticides in Surface Waters. Sci. Total Environ. 2013, 464, 829–835. DOI: 10.1016/j.scitotenv.2013.06.025.
  • Camino-Sánchez, F. J.; Rodríguez-Gómez, R.; Zafra-Gómez, A.; Santos-Fandila, A.; Vílchez, J. L. Stir Bar Sorptive Extraction: Recent Applications Limitations and Future Trends. Talanta. 2014, 130, 388–399. DOI: 10.1016/j.talanta.2014.07.022.
  • He, M.; Chen, B.; Hu, B. Recent Developments in Stir Bar Sorptive Extraction. Anal. Bioanal. Chem. 2014, 406, 2001–2026. DOI: 10.1007/s00216-013-7395-y.
  • Hashemi, S. H.; Kaykhaii, M.; Khajeh, M. Molecularly Imprinted Polymers for Stir Bar Sorptive Extraction Synthesis Characterization and Application. Anal. Lett. 2015, 48, 1815–1829. DOI: 10.1080/00032719.2014.1003431.
  • Nazyropoulou, C.; Samanidou, V. Stir Bar Sorptive Extraction Applied to the Analysis of Biological Fluids. Bioanalysis 2015, 7, 2241–2250. DOI: 10.4155/bio.15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.