115
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Use of HPLC retention to investigate new P descriptors designed to represent ion-π interactions

, , , , , & show all

References

  • Stalcup, A. Chromatography in the Millennium - Perspectives. In Chromatography: A Science of Discovery; Wixom, R. L.; Gehrke, C. W., Eds.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2010, Chapter 11, pp 375–387.
  • Tan, L. C.; Carr, P. W.; Abraham, M. H. Study of Retention in Reversed-Phase Liquid Chromatography Using Linear Solvation Energy Relationships I. The Stationary Phase. J. Chromatogr. A. 1996, 752, 1–18. DOI: 10.1016/S0021-9673(96)00459-1.
  • Tang, B.; Tian, M.; Lee, Y. R.; Row, K. H. Using Linear Solvation Energy Relationship Model to Study the Retention Factor of Solute in Liquid Chromatography. J. Phys. Org. Chem. 2012, 25, 1058–1071. DOI: 10.1002/poc.3027.
  • Vitha, M.; Carr, P. W. The Chemical Interpretation and Practice of Linear Solvation Energy Relationships in Chromatography. J. Chromatogr. A. 2006, 1126, 143–194. DOI: 10.1016/j.chroma.2006.06.074.
  • Abraham, M. H.; Ibrahim, A.; Zissimos, A. M. Determination of Sets of Solute Descriptors from Chromatographic Measurements. J. Chromatogr. A. 2004, 1037, 29–47. DOI: 10.1016/j.chroma.2003.12.004.
  • Gokel, G. W.; Barkey, N. Transport of Chloride Ion through Phospholipid Bilayers Mediated by Synthetic Ionophores. New J. Chem. 2009, 33, 947–963. DOI: 10.1039/b817245p.
  • Matile, S.; Vargas Jentzsch, A.; Montenegro, J.; Fin, A. Recent Synthetic Transport Systems. Chem. Soc. Rev. 2011, 40, 2453–2474. DOI: 10.1039/c0cs00209g.
  • Busschaert, N.; Gale, P. A. Small-Molecule Lipid-Bilayer Anion Transporters for Biological Applications. Angew. Chem. Int. Ed. 2013, 52, 1374–1382. DOI: 10.1002/anie.201207535.
  • Kuang, Z.; Mahankali, U.; Beck, T. L. Proton Pathways and H+/Cl − Stoichiometry in Bacterial Chloride Transporters. Proteins. 2007, 68, 26–33. DOI: 10.1002/prot.21441.
  • Zhang, S.-R.; Du, D.-Y.; Qin, J.-S.; Bao, S.-J.; Li, S.-L.; He, W.-W.; Lan, Y.-Q.; Shen, P.; Su, Z.-M. A Fluorescent Sensor for Highly Selective Detection of Nitroaromatic Explosives Based on a 2D, Extremely Stable, Metal-Organic Framework. Chem. Eur. J. 2014, 20, 3589–3594. DOI: 10.1002/chem.201304692.
  • Yang, Y.; Yin, C.; Huo, F.; Chao, J.; Zhang, Y.; Cheng, F. A New Highly Selective and Turn-on Fluorescence Probe for Detection of Cyanide. Sens. Actuators, B. 2014, 193, 220–224. DOI: 10.1016/j.snb.2013.11.094.
  • Li, X.; Zhang, D.; Li, J. Emission “off-on” Effect from Europium Complexes Triggered by AcO Anion: Synthesis, Characterization and Sensing Performance. Spectrochim. Acta, Part A 2014, 127, 1–9. DOI: 10.1016/j.saa.2014.02.042.
  • Dorazco-Gonzalez, A. Chemosensing of Chloride Based on a lLuminescent Platinum(II) NCN Pincer Complex in Aqueous Media. Organometallics. 2014, 33, 868–875. DOI: 10.1021/om4007054.
  • Chifotides, H. T.; Dunbar, K. R. Anion–π Interactions in Supramolecular Architectures. Acc. Chem. Res. 2013, 46, 894–906. DOI: 10.1021/ar300251k.
  • Xu, K.; Jiao, S.; Yao, W.; Xie, E.; Tang, B.; Wang, C. Syntheses and Highly Enantioselective Fluorescent Recognition of α-Aminocarboxylic Acid Anions Using Chiral Oxacalix[2]Arene[2]Bisbinaphthes. Chirality. 2012, 24, 646–651. DOI: 10.1002/chir.22059.
  • Singh, N. J.; Lee, E. C.; Choi, Y. C.; Lee, H. M.; Kim, K. S. Understanding Clusters toward the Design of Functional Molecules and Nanomaterials. BCSJ. 2007, 80, 1437–1450. DOI: 10.1246/bcsj.80.1437.
  • Ishihara, K.; Fushimi, M.; Akakura, M. Rational Design of Minimal Artificial Diels-Alderases Based on the Copper(II) Cation-Aromatic π Attractive Interaction. Acc. Chem. Res. 2007, 40, 1049–1055. DOI: 10.1021/ar700083a.
  • Zhao, Y.; Beuchat, C.; Domoto, Y.; Gajewy, J.; Wilson, A.; Mareda, J.; Sakai, N.; Matile, S. Anion–π Catalysis. J. Am. Chem. Soc. 2014, 136, 2101–2111. DOI: 10.1021/ja412290r.
  • Yamada, S. Intramolecular cation–pi interaction in organic synthesis . Org. Biomol. Chem. 2007, 5, 2903–2912. DOI: 10.1039/b706512b.
  • Branduardi, D.; Gervasio, F. L.; Cavalli, A.; Recanatini, M.; Parrinello, M. The Role of the Peripheral Anionic Site and Cation–π Interactions in the Ligand Penetration of the Human AChE Gorge. J. Am. Chem. Soc. 2005, 127, 9147–9155. DOI: 10.1021/ja0512780.
  • Ashcroft, F. M. From Molecule to Malady. Nature 2006, 440, 440–447. DOI: 10.1038/nature04707.
  • Qiao, L.; Li, H.; Shan, Y.; Wang, S.; Shi, X.; Lu, X.; Xu, G. Study of Surface-Bonded Dicationic Ionic Liquids as Stationary Phases for Hydrophilic Interaction Chromatography. J. Chromatogr. A. 2014, 1330, 40–50. DOI: 10.1016/j.chroma.2014.01.020.
  • Qiu, H.; Mallik, A. K.; Takafuji, M.; Jiang, S.; Ihara, H. New Poly(Ionic Liquid)-Grafted Silica Multi-Mode Stationary Phase for Anion-Exchange/Reversed-Phase/Hydrophilic Interaction Liquid Chromatography. Analyst. 2012, 137, 2553–2555. DOI: 10.1039/c2an35348b.
  • Joshi, M. D.; Anderson, J. L. Recent Advances of Ionic Liquids in Separation Science and Mass Spectrometry. RSC Adv. 2012, 2, 5470–5484. DOI: 10.1039/c2ra20142a.
  • Fields, P. R.; Sun, Y.; Stalcup, A. M. Application of a Modified Linear Solvation Energy Relationship (LSER) Model to Retention on a Butylimidazolium-Based Column for High Performance Liquid Chromatography. J. Chromatogr A. 2011, 1218, 467–475. DOI: 10.1016/j.chroma.2010.11.058.
  • Sun, P.; Armstrong, D. W. Ionic Liquids in Analytical Chemistry. Anal. Chim. Acta. 2010, 661, 1–16. DOI: 10.1016/j.aca.2009.12.007.
  • Van Meter, D. S.; Oliver, N. J.; Carle, A. B.; Dehm, S.; Ridgway, T. H.; Stalcup, A. M. Characterization of Surface-Confined Ionic Liquid Stationary Phases: impact of Cation and Anion Identity on Retention. Anal. Bioanal. Chem. 2009, 393, 283–294. DOI: 10.1007/s00216-008-2482-1.
  • Abraham, M. H. Scales of Solute Hydrogen-Bonding: their Construction and Application to Physicochemical and Biochemical Processes. Chem. Soc. Rev. 1993, 22, 73–83. DOI: 10.1039/cs9932200073.
  • Poole, C. F.; Poole, S. K. Column Selectivity from the Perspective of the Solvation Parameter Model. J. Chromatogr. A. 2002, 965, 263–299. DOI: 10.1016/s0021-9673(01)01361-9.
  • Abraham, M. H.; Acree, W. E. Jr. Equations for the Partition of Neutral Molecules, Ions and Ionic Species from Water to Water-Ethanol Mixtures. J. Solution Chem. 2012, 41, 730–740. DOI: 10.1007/s10953-012-9822-7.
  • Abraham, M. H.; Acree, W. E. Jr. Hydrogen Bond Descriptors and Other Properties of Ion Pairs. New J. Chem. 2011, 35, 1740–1750.
  • VanMiddlesworth, B. J.; Stalcup, A. M. Characterization of Surface Confined Ionic Liquid Stationary Phases: Impact of Cation Revisited. J. Chromatogr. A. 2014, 1364, 171–182. DOI: 10.1016/j.chroma.2014.08.079.
  • Abraham, M. H.; Roses, M.; Poole, C. F.; Poole, S. K. Hydrogen Bonding. 42. Characterization of Reversed-Phase High-Performance Liquid Chromatographic C18 Stationary Phases. J. Phys. Org. Chem. 1997, 10, 358–368. DOI: 10.1002/(SICI)1099-1395(199705)10:5<358::AID-POC907>3.0.CO;2-N.
  • Advanced Chemistry Development, Inc., ACD/Labs 2015. Release (Build 2726. 27 Nov 2014).
  • Chirita, R.-I.; West, C.; Zubrzycki, S.; Finaru, A.-L.; Elfakir, C. Investigations on the Chromatographic Behaviour of Zwitterionic Stationary Phases Used in Hydrophilic Interaction Chromatography. J. Chromatogr. A. 2011, 1218, 5939–5963. DOI: 10.1016/j.chroma.2011.04.002.
  • Abraham, M. H.; Acree, W. E. Solute Descriptors for Phenoxide Anions and Their Use to Establish Correlations of Rates of Reaction of Anions with Iodomethane. J. Org. Chem. 2010, 75, 3021–3026. DOI: 10.1021/jo100292j.
  • West, C.; Zhang, Y.; Morin-Allory, L. Insights into Chiral Recognition Mechanisms in Supercritical Fluid Chromatography. I. Non-Enantiospecific Interactions Contributing to the Retention on Tris-(3,5-Dimethylphenylcarbamate) Amylose and Cellulose Stationary Phases. J. Chromatogr. A. 2011, 1218, 2019–2032. DOI: 10.1016/j.chroma.2010.11.084.
  • West, C.; Guenegou, G.; Zhang, Y.; Morin-Allory, L. Insights into Chiral Recognition Mechanisms in Supercritical Fluid Chromatography. II. Factors Contributing to Enantiomer Separation on Tris-(3,5-Dimethylphenylcarbamate) of Amylose and Cellulose Stationary Phases. J. Chromatogr. A. 2011, 1218, 2033–2057. DOI: 10.1016/j.chroma.2010.11.085.
  • Alkorta, I.; Rozas, I.; Elguero, J. An Attractive Interaction between the π-Cloud of C6F6 and Electron-Donor Atoms. J. Org. Chem. 1997, 62, 4687–4691. DOI: 10.1021/jo970125v.
  • Gallivan, J. P.; Dougherty, D. A. Can Lone Pairs Bind to a π System? The Water·Hexafluorobenzene Interaction. Org. Lett. 1999, 1, 103–105. DOI: 10.1021/ol990577p.
  • Egli, M.; Sarkhel, S. Lone Pair-Aromatic Interactions: To Stabilize or Not to Stabilize. Acc. Chem. Res. 2007, 40, 197–205. DOI: 10.1021/ar068174u.
  • Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. DOI: 10.1021/acs.chemrev.5b00484.
  • Kamlet, M. J.; Hall, T. N.; Boykin, J.; Taft, R. W. Linear Solvation Energy Relationships. 6. Additions to and Correlations with the π* Scale of Solvent Polarities. J. Org. Chem. 1979, 44, 2599–2604. DOI: 10.1021/jo01329a001.
  • Arey, J. S.; Green, W. H., Jr.; Gschwend, P. M. The Electrostatic Origin of Abraham's Solute Polarity Parameter. J Phys Chem B .. 2005, 109, 7564–7573. DOI: 10.1021/jp044525f.
  • Abraham, M. H. Hydrogen Bonding. 31. Construction of a Scale of Solute Effective or Summation Hydrogen-Bond Basicity. J. Phys. Org. Chem. 1993, 6, 660–684. DOI: 10.1002/poc.610061204.
  • Wireduaah, S.; Parker, T. M.; Bagwill, C.; Kirkpatrick, C. C.; Lewis, M. Predicting the Cation-[Small pi] Binding of Substituted Benzenes: energy Decomposition Calculations and the Development of a Cation-[Small pi] Substituent Constant. RSC Advances 2014, 4, 62061–62070. DOI: 10.1039/C4RA08638D.
  • Bagwill, C.; Anderson, C.; Sullivan, E.; Manohara, V.; Murthy, P.; Kirkpatrick, C. C.; Stalcup, A.; Lewis, M. Predicting the Strength of Anion–π Interactions of Substituted Benzenes: The Development of Anion–π Binding Substituent Constants. J. Phys. Chem. A. 2016, 120, 9235–9243. DOI: 10.1021/acs.jpca.6b06276.
  • Hardebeck, L. K. E.; Johnson, C. A.; Hudson, G. A.; Ren, Y.; Watt, M.; Kirkpatrick, C. C.; Znosko, B. M.; Lewis, M. Predicting DNA-Intercalator Binding: The Development of an Arene-Arene Stacking Parameter from SAPT Analysis of Benzene-Substituted Benzene Complexes. J. Phys. Org. Chem. 2013, 26, 879–884. DOI: 10.1002/poc.3184.
  • Lewis, M.; Bagwill, C.; Hardebeck, L. K. E.; Wireduaah, S. The Use of Hammett Constants to Understand the Non-Covalent Binding of Aromatics. Comput. Struct. Biotechnol. J. 2012, 1, e201204004. DOI: 10.5936/csbj.201204004.
  • Salonen, L. M.; Ellermann, M.; Diederich, F. Aromatic Rings in Chemical and Biological Recognition: energetics and Structures. Angew. Chem. Int. Ed. 2011, 50, 4808–4842. DOI: 10.1002/anie.201007560.
  • Quinonero, D.; Garau, C.; Rotger, C.; Frontera, A.; Ballester, P.; Costa, A.; Deya, P. M. Anion–pi Interactions: do they exist? Angew. Chem. Int. Ed. Engl. 2002, 41, 3389–3392. DOI: 10.1002/1521-3773(20020916)41:18&lt;3389::AID-ANIE3389&gt;3.0.CO;2-S.
  • Clements, A.; Lewis, M. Arene − Cation Interactions of Positive Quadrupole Moment Aromatics and Arene − Anion Interactions of Negative Quadrupole Moment Aromatics. J. Phys. Chem. A. 2006, 110, 12705–12710. DOI: 10.1021/jp065175v.
  • Abraham, M. H.; McGowan, J. C. The Use of Characteristic Volumes to Measure Cavity Terms in Reversed Phase Liquid Chromatography. Chromatographia. 1987, 23, 243–246. DOI: 10.1007/BF02311772.
  • Abraham, M. H.; Zhao, Y. H. Determination of Solvation Descriptors for Ionic Species: hydrogen Bond Acidity and Basicity. J. Org. Chem. 2004, 69, 4677–4685. DOI: 10.1021/jo049766y.
  • Snyder, L. R.; Dolan, J. W.; Carr, P. W. The Hydrophobic-Subtraction Model of Reversed-Phase Column Selectivity. J Chromatogr A. 2004, 1060, 77–116. DOI: 10.1016/j.chroma.2004.08.121.
  • Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of Van Der Waals Complexes. Chem. Rev. 1994, 94, 1887–1930. DOI: 10.1021/cr00031a008.
  • Hohenstein, E. G.; Sherrill, C. D. Density Fitting of Intramonomer Correlation Effects in Symmetry-Adapted Perturbation Theory. J. Chem. Phys. 2010, 133, 014101. DOI: 10.1063/1.3451077.
  • Hohenstein, E. G.; Sherrill, C. D. Efficient Evaluation of Triple Excitations in Symmetry-Adapted Perturbation Theory via Second-Order Moller-Plesset Perturbation Theory Natural Orbitals. J. Chem. Phys. 2010, 133, 104107. DOI: 10.1063/1.3479400.
  • Hohenstein, E. G.; Sherrill, C. D. Wavefunction Methods for Noncovalent Interactions. Wires. Comput. Mol. Sci. 2012, 2, 304–326. DOI: 10.1002/wcms.84.
  • Turney, J. M.; Simmonett, A. C.; Parrish, R. M.; Hohenstein, E. G.; Evangelista, F. A.; Fermann, J. T.; Mintz, B. J.; Burns, L. A.; Wilke, J. J.; Abrams, M. L. Psi4: An Open-Source ab Initio Electronic Structure Program. Wires. Comput. Mol. Sci. 2012, 2, 556–565. DOI: 10.1002/wcms.93.
  • Zhao, J.; Carr, P. W. Comparison of the Retention Characteristics of Aromatic and Aliphatic Reversed Phases for HPLC Using Linear Solvation Energy Relationships. Anal. Chem. 1998, 70, 3619–3628. DOI: 10.1021/ac980173v.
  • Heberger, K.; Kollar-Hunek, K. Sum of Ranking Differences for Method Discrimination and Its Validation: Comparison of Ranks with Random Numbers. J. Chemom. 2011, 25, 151–158.
  • Mendenhall, W.; Beaver, R. J.; Beaver, B. M. Introduction to Probability and Statistics, 14th ed.; Brooks/Cole, Cengage Learning: Boston, MA, USA, 2013.
  • Sun, Y.; Stalcup, A. M. Mobile Phase Effects on Retention on a New Butylimidazolium-Based High-Performance Liquid Chromatographic Stationary Phase. J. Chromatogr. A. 2006, 1126, 276–282. DOI: 10.1016/j.chroma.2006.06.092.
  • Subirats, X.; Reinstadler, S.; Porras, S. P.; Raggi, M. A.; Kenndler, E. Comparison of Methanol and Acetonitrile as Solvents for the Separation of Sertindole and Its Major Metabolites by Capillary Zone Electrophoresis. Electrophoresis. 2005, 26, 3315–3324. DOI: 10.1002/elps.200500056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.