147
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Two-dimensional general rate model for non-isothermal liquid chromatography considering finite rates of adsorption–desorption kinetics

ORCID Icon & ORCID Icon

References

  • Greibrokk, T.; Andersen, T. High Temperature Liquid Chromatography. J. Chromatogr. A. 2003, 1000, 743–755. DOI: 10.1016/S0021-9673(02)01963-5.
  • Pereira, L.; Aspey, S.; Ritchie, H. High Temperature to Increase Throughput in Liquid Chromatography and Liquid Chromatography-Mass Spectrometry with a Porous Graphitic Carbon Stationary Phase. J. Sep. Sci. 2007, 30, 1115–1124. DOI: 10.1002/jssc.200600521.
  • Guillarme, D.; Heinisch, S. Detection Modes with High Temperature Liquid Chromatography-a Review. Sep. Purif. Rev. 2005, 34, 181–216. DOI: 10.1080/15422110500323055.
  • LeRosen, A. L.; Rivet, C. A. Rate of Movement of Chromatographic Zone as Function of Temperature. Anal. Chem. 1948, 20, 1093–1094. DOI: 10.1021/ac60023a033.
  • Strain, H. H. Conditions Affecting the Sequence of Organic Compounds in Tswett Adsorption Columns. Ind. Eng. Chem. Anal. Ed. 1946, 18, 605–609. DOI: 10.1021/i560158a006.
  • Chang, L. T. Effect of Temperature on Movement of Chromatographic Zone. Anal. Chem. 1953, 25, 1235–1237. DOI: 10.1021/ac60080a026.
  • Antia, F. D.; Horvath, C. High-Performance Liquid Chromatography at Elevated Temperatures: Examination of Conditions for the Rapid Separation of Large Molecules. J. Chromatogr. A. 1988, 435, 1–15. DOI: 10.1016/S0021-9673(01)82158-0.
  • Giddings, J. C. Dynamics of Chromatography. Part I: Principles and Theory; Marcel Dekker: New York, NY, 1965.
  • Chen, H.; Horvath, C. High-Speed High-Performance Liquid Chromatography of Peptides and Proteins. J. Chromatogr. A. 1995, 705, 3–20. DOI: 10.1016/0021-9673(94)01254-C.
  • Chen, M. H.; Horvath, C. Temperature Programming and Gradient Elution in Reversed-Phase Chromatography with Packed Capillary Columns. J. Chromatogr. A. 1997, 788, 51–61. DOI: 10.1016/S0021-9673(97)00715-2.
  • Thompson, J. D.; Carr, P. W. A Study of the Critical Criteria for Analyte Stability in High-Temperature Liquid Chromatography. Anal. Chem. 2002, 74, 1017–1023. DOI: 10.1021/ac010917w.
  • Kephart, T. S; Dasgupta, P. K. Superheated Water Eluent Capillary Liquid Chromatography. Talanta. 2002, 56, 977–987. DOI: 10.1016/S0039-9140(02)00049-8.
  • Heinisch, S.; Rocca, J. L. Sense and Nonsense of High-Temperature Liquid Chromatography. J. Chromatogr. A. 2009, 1216, 642–658. DOI: 10.1016/j.chroma.2008.11.079.
  • Giegold, S.; Teutenberg, T.; Tuerk, J.; Kiffmeyer, T.; Wenclawiak, B. Determination of Sulfonamides and Trimethoprim Using High Temperature HPLC with Simultaneous Temperature and Solvent Gradient. J. Sep. Sci. 2008, 31, 3497–3502. DOI: 10.1002/jssc.200800330.
  • McNeff, C. V.; Yan, B.; Stoll, D. R.; Henry, R. A. Practice and Theory of High Temperature Liquid Chromatography. J. Sep. Sci. 2007, 30, 1672–1685. DOI: 10.1002/jssc.200600526.
  • Godin, J. P.; Hopfgartner, G.; Fay, L. Temperature-Programmed High-Performance Liquid Chromatography Coupled to Isotope Ratio Mass Spectrometry. Anal. Chem. 2008, 80, 7144–7152. DOI: 10.1021/ac8004204.
  • Yang, Y.; Kondo, T.; Kennedy, T. J. HPLC Separations with Micro-Bore Columns Using High-Temperature Water and Flame Ionization Detection. J. Chromatogr. Sci. 2005, 43, 518–521. DOI: 10.1093/chromsci/43.10.518.
  • de Boer, A. R.; Alcaide-Hidalgo, J. M.; Krabbe, J. G.; Kolkman, J.; van Emde Boas, C. N.; Niessen, W. M. A.; Lingeman, H.; Irth, H. High-Temperature Liquid Chromatography Coupled on-Line to a Continuous-Flow Biochemical Screening Assay with Electrospray Ionization Mass Spectrometric Detection. Anal. Chem. 2005, 77, 7894–7900. DOI: 10.1021/ac0510282.
  • Louden, D.; Handley, A.; Taylor, S.; Sinclair, I.; Lenz, E.; Wilson, I. D. High Temperature Reversed-Phase HPLC Using Deuterium Oxide as a Mobile Phase for the Separation of Model Pharmaceuticals with Multiple on-Line Spectroscopic Analysis. Analyst. 2001, 126, 1625–1629. DOI: 10.1039/b107648p.
  • Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases and Liquids; McGraw Hill: New York, NY, 1987.
  • Li, J.; Hu, Y.; Carr, P. W. Fast Separations at Elevated Temperatures on Polybutadiene-Coated Zirconia Reversed-Phase Material. Anal. Chem. 1997, 69, 3884–3888. DOI: 10.1021/ac9705069.
  • Kondo, T.; Yang, Y. Comparison of Elution Strength, Column Efficiency, and Peak Symmetry in Subcritical Water Chromatography and Traditional Reversed-Phase Liquid Chromatography. Anal. Chim. Acta. 2003, 494, 157–166. DOI: 10.1016/S0003-2670(03)00865-1.
  • Li, J.; Carr, P. W. Effect of Temperature on the Thermodynamic Properties, Kinetic Performance, and Stability of Polybutadiene-Coated Zirconia. Anal. Chem. 1997, 69, 837–843. DOI: 10.1021/ac960854v.
  • Sainio, T.; Kaspereit, M.; Kienle, A.; Seidel-Morgenstern, A. Thermal Effects in Reactive Liquid Chromatography. Chem. Eng. Sci. 2007, 62, 5674–5681. DOI: 10.1016/j.ces.2007.02.033.
  • Sainio, T.; Zhang, L.; Seidel-Morgenstern, A. Adiabatic Operation of Chromatographic Fixed-Bed Reactors. Chem. Eng. J. 2011, 168, 861–871. DOI: 10.1016/j.cej.2011.02.010.
  • Vu, T. D.; Seidel-Morgenstern, A. Quantifying Temperature and Flow Rate Effects on the Performance of a Fixed-Bed Chromatographic Reactor. J. Chromatogr. A. 2011, 1218, 8097–8109. DOI: 10.1016/j.chroma.2011.09.018.
  • Javeed, S.; Qamar, S.; Seidel-Morgenstern, A.; Warnecke, G. Parametric Study of Thermal Effects in Reactive Liquid Chromatography. Chem. Eng. J. 2012, 191, 426–440. DOI: 10.1016/j.cej.2012.02.040.
  • Qamar, S.; Sattar, F. A.; Batool, I.; Seidel-Morgenstern, A. Seidel-Morgenstern, A. Theoretical Analysis of the Influence of Forced and Inherent Temperature Fluctuations in an Adiabatic Chromatographic Column. Chem. Eng. Sci. 2017, 161, 249–264. DOI: 10.1016/j.ces.2016.12.027.
  • Qamar, S.; Sattar, F. A.; Abbasi, J. N.; Seidel-Morgenstern, A. Numerical Simulation of Nonlinear Chromatography with Core-Shell Particles Applying the General Rate Model. Chem. Eng. Sci. 2016, 147, 54–64. DOI: 10.1016/j.ces.2016.03.027.
  • David, U. U.; Qamar, S.; Seidel-Morgenstern, A. Analytical and Numerical Solutions of Two-Dimensional General Rate Models for Liquid Chromatographic Columns Packed with Core-Shell Particles. Chem. Eng. Res. Design. 2018, 130, 295–320. DOI: 10.1016/j.cherd.2017.12.044.
  • Guiochon, G.; Felinger, A.; Shirazi, D. G.; Katti, A. M. Fundamentals of Preparative and Nonlinear Chromatography, 2nd ed. Elsevier Academic Press: New York, NY, 2006.
  • Guiochon, G.; Lin, B. Modeling for Preparative Chromatography; Academic Press: London, UK, 2003.
  • Guiochon, G. Preparative Liquid Chromatography. J. Chromatogr. A. 2002, 965, 129–161. DOI: 10.1016/S0021-9673(01)01471-6.
  • Ruthven, D. M. Principles of Adsorption and Adsorption Processes; John Wiley and Sons: New York, NY, 1984.
  • Brhane, K.; Qamar, S.; Seidel-Morgenstern, A. Two-Dimensional General Rate Model of Liquid Chromatography Incorporating Finite Rates of Adsorption-Desorption Kinetics and Core-Shell Particles. Ind. Eng. Chem. Res. 2019, 58, 8296–8308. DOI: 10.1021/acs.iecr.9b00364.
  • Uche, U. D.; Qamar, S.; Seidel-Morgenstern, A. Analytical Solution of Non-Isothermal Two-Dimensional General Rate Model of Liquid Chromatography. Adsorption. 2019, 25, 1487–1509. DOI: 10.1007/s10450-019-00160-z.
  • Carr, P. W.; Stoll, D. R. Two-Dimensional Liquid Chromatography-Principles, Practical Implementation and Applications. Agilent Technologies: Amstelveen, Germany, 2015.
  • Akram, N.; Qamar, S.; Seidel-Morgenstern, A. Nonlinear Model of Liquid Chromatography considering Finite Rates of Adsorption-Desorption Kinetics and Core-Shell Adsorbents. J. Liq. Chrom. Relat. Tech. 2018, 41, 964–972. DOI: 10.1080/10826076.2018.1519832.
  • Dunnebier, G.; Klatt, K. U. Modelling and Simulation of Nonlinear Chromatographic Separation Processes: A Comparison of Different Modelling Approaches. Chem. Eng. Sci. 2000, 55, 373–380. DOI: 10.1016/S0009-2509(99)00332-2.
  • Gu, T.; Truei, Y. H.; Tsai, G. J.; Tsao, G. T. Modeling of Gradient Elution in Multicomponent Nonlinear Chromatography. Chem. Eng. Sci. 1992, 47, 253–262. DOI: 10.1016/0009-2509(92)80219-3.
  • Uche, U. D.; Qamar, S.; Seidel-Morgenstern, A. Analysis of Two-Dimensional Models for Liquid Chromatographic Reactors of Cylindrical Geometry. Int. J. Chem. Kinet. 2019, 51, 563–578. DOI: 10.1002/kin.21277.
  • Rehman, J. U.; Muneer, A.; Abbasi, J. N.; Qamar, S.; Seidel-Morgenstern, A. Study of Thermal Effects in Two-Component Nonisothermal Liquid Chromatography considering Thermally Insulated Columns. Ind. Eng. Chem. Res. 2018, 57, 15084–15095. DOI: 10.1021/acs.iecr.8b02990.
  • Asberg, D.; Chutkowski, M.; Lesko, M.; Samuelsson, J.; Kaczmarski, K.; Fornstedt, T. A Practical Approach for Predicting Retention Time Shifts Due to Pressure and Temperature Gradients in Ultra-High-Pressure Liquid Chromatography. J. Chromatogr. A. 2017, 1479, 107–120. DOI: 10.1016/j.chroma.2016.11.050.
  • Hatton, W.; Nishimura, M. Temperature Dependence of Chromatic Dispersion in Single Mode Fibers. J. Lightwave Technol. 1986, 4, 1552–1555. DOI: 10.1109/JLT.1986.1074637.
  • Burden, R. L.; Faires, J. D.; Reynolds, A. C. Numerical Analysis; PWS Publishing Company: Worcester, UK, 1978.
  • Ahmad, A. G.; Qamar, S.; Seidel-Morgenstern, A. Linearized Non-Equilibrium and Non-Isothermal Two-Dimensional Model of Liquid Chromatography for Studying Thermal Effects in Cylindrical Columns. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 436–451. DOI: 10.1080/10826076.2019.1625370.
  • Carslaw, H. S.; Jaeger, J. C. Operational Methods in Applied Mathematics; The Clarendon Press: Oxford, UK, 1941.
  • Chen, J. S.; Liu, Y. H.; Liang, C. P.; Liu, C. W.; Lin, C. W. Exact Analytical Solutions for Two-Dimensional Advection-Dispersion Equation in Cylindrical Coordinates Subject to Third-Type Inlet Boundary Conditions. Adv. Water Resour. 2011, 34, 365–374. DOI: 10.1016/j.advwatres.2010.12.008.
  • Crank, J. The Mathematics of Diffusion, 2nd ed. Clarendon Press, Oxford, UK, 1975.
  • Durbin, F. Numerical Inversion of Laplace Transforms: An Efficient Improvement to Dubner and Abate’s Method. Comput. J. 1974, 17, 371–376. DOI: 10.1093/comjnl/17.4.371.
  • Duffy, D. G. Transform Methods for Solving Partial Differential Equations; Chapman and Hall-CRC: Boca Raton, FL, 2004.
  • Qamar, S.; Perveen, S.; Seidel-Morgenstern, A. Numerical Approximation of Nonlinear and Non-Equilibrium Two-Dimensional Model of Chromatography. Comput. Chem. Eng. 2016, 94, 411–427. DOI: 10.1016/j.compchemeng.2016.08.008.
  • Qamar, S.; Seidel-Morgenstern, A. Extending the Potential of Moment Analysis in Chromatography. Trends Anal. Chem. 2016, 81, 87–101. DOI: 10.1016/j.trac.2016.01.007.
  • Miyabe, K. Moment Theory for Kinetic Study of Chromatography. Trends Anal. Chem. 2016, 81, 79–86. DOI: 10.1016/j.trac.2016.01.003.
  • Qamar, S.; Abbasi, J. N.; Javeed, S.; Seidel-Morgenstern, A. Analytical Solutions and Moment Analysis of General Rate Model for Linear Liquid Chromatography. Chem. Eng. Sci. 2014, 107, 192–205. DOI: 10.1016/j.ces.2013.12.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.