123
Views
3
CrossRef citations to date
0
Altmetric
Articles

Chromatographic fingerprinting of some basils and the evaluation of their antioxidant properties with chemometric calculations

&

References

  • Złotek, U.; Szymanowska, U.; Karaś, M.; Świeca, M. Antioxidative and Anti‐Inflammatory Potential of Phenolics from Purple Basil (Ocimum basilicum L.) Leaves Induced by Jasmonic, Arachidonic and β‐Aminobutyric Acid Elicitation. Inter. Int. J. Food Sci. Technol. 2016, 51, 163–170. DOI: 10.1111/ijfs.12970.
  • Jayasinghe, C.; Gotoh, N.; Aoki, T.; Wada, S. Phenolics Composition and Antioxidant Activity of Sweet Basil (Ocimum basilicum L.). J. Agric. Food Chem. 2003, 51, 4442–4449. DOI: 10.1021/jf034269o.
  • Hussain, A. I.; Anwar, F.; Hussain Sherazi, S. T.; Przybylski, R. Chemical Composition, Antioxidant and Antimicrobial Activities of Basil (Ocimum basilicum) Essential Oils Depends on Seasonal Variations. Food Chem. 2008, 108, 986–995. DOI: 10.1016/j.foodchem.2007.12.010.
  • Teofilović, B.; Grujić-Letić, N.; Goločorbin-Kon, S.; Stojanović, S.; Vastag, G.; Gadžurić, S. Experimental and Chemometric Study of Antioxidant Capacity of Basil (Ocimum basilicum) Extracts. Ind. Crops Prod. 2017, 100, 176–182. DOI: 10.1016/j.indcrop.2017.02.039.
  • McCance, K. R.; Flanigan, P. M.; Quick, M. M.; Niemeyer, E. D. Influence of Plant Maturity on Anthocyanin Concentrations, Phenolic Composition, and Antioxidant Properties of 3 Purple Basil (Ocimum basilicum L.) Cultivars. J. Food Comp. Anal. 2016, 53, 30–39. DOI: 10.1016/j.jfca.2016.08.009.
  • Kwee, E. M.; Niemeyer, E. D. Variations in Phenolic Composition and Antioxidant Properties among 15 Basil (Ocimum basilicum L.) Cultivars. Food Chem. 2011, 128, 1044–1050. DOI: 10.1016/j.foodchem.2011.04.011.
  • Shiga, T.; Shoji, K.; Shimada, H.; Hashida, S.; Goto, F.; Yoshihara, T. Effect of Light Quality on Rosmarinic Acid Content and Antioxidant Activity of Sweet Basil. Ocimum basilicum L. Plant Biotech. 2009, 26, 255–259. DOI: 10.5511/plantbiotechnology.26.255.
  • Gradinariu, V.; Cioanca, O.; Gille, E.; Aorotosoie, A. C.; Hritcu, L.; Hancianu, M. The Chemical Profile of Basil Biovarietes and Its Implication on the Biological Activity. Farmacia. 2013, 61, 632–639.
  • Leal, P. F.; Maia, N. B.; Carmello, Q. A. C.; Catharino, R. R.; Eberlin, M. N.; Meireles, M. A. A. Sweet Basil (Ocimum basilicum) Extracts Obtained by Supercritical Fluid Extraction (SFE): Global Yields, Chemical Composition, Antioxidant Activity, and Estimation of the Cost of Manufacturing. Food Bioprocess. Technol. 2008, 1, 326–331. DOI: 10.1007/s11947-007-0030-1.
  • Kaurinovic, B.; Popovic, M.; Vlaisavljevic, S.; Trivic, S. Antioxidant Capacity of Ocimum basilicum L. and Origanum vulgare L. Molecules. 2011, 16, 7401–7414. DOI: 10.3390/molecules16097401.
  • Filip, S.; Vidović, S.; Vladić, J.; Pavlić, B.; Adamović, D.; Zeković, Z. Chemical Composition and Antioxidant Properties of Ocimum basilicum L. extracts Obtained by Supercritical Carbon Dioxide Extraction: Drug Exhausting Method. J. Supercrit. Fluids. 2016, 109, 20–25. DOI: 10.1016/j.supflu.2015.11.006.
  • Kadan, S.; Saad, B.; Sasson, Y.; Zaid, H. In Vitro Evaluation of anti-Diabetic Activity and Cytotoxicity of Chemically Analysed Ocimum basilicum Extracts. Food Chem. 2016, 196, 1066–1074. DOI: 10.1016/j.foodchem.2015.10.044.
  • Javanmardi, J.; Stushnoff, C.; Locke, E.; Vivanco, J. M. Antioxidant Activity and Total Phenolic Content of Iranian Ocimum Accessions. Food Chem. 2003, 83, 547–550. DOI: 10.1016/S0308-8146(03)00151-1.
  • Güez, C. M.; Souza, R. O.; Fischer, P.; Moura Leão, M. F.; Duarte, J. A.; Boligon, A. A.; Athayde, M. L.; Zuravski, L.; Souza de Oliveira, L. F.; Machado, M. M. Evaluation of Basil Extract ( Ocimum basilicum L.) on Oxidative, Anti-Genotoxic and Anti-Inflammatory Effects in Human Leukocytes Cell Cultures Exposed to Challenging Agents. Braz. J. Pharm. Sci. 2017, 53, 12. DOI: 10.1590/s2175-97902017000115098.
  • Ahmed, A. F.; Attia, F. A. K.; Liu, Z.; Li, C.; Wei, J.; Kang, W. Antioxidant Activity and Total Phenolic Content of Essential Oils and Extracts of Sweet Basil (Ocimum basilicum L.) Plants. Food Sci. Hum. Well. 2019, 8, 299–305. DOI: 10.1016/j.fshw.2019.07.004.
  • Abramovič, H.; Abram, V.; Čuk, A.; Čeh, B.; Smole Možina, S.; Vidmar, M.; Pavlovič, M.; Poklar Ulrih, N. Antioxidative and Antibacterial Properties of Organically Grown Thyme (Thymus sp.) and Basil (Ocimum basilicum L.). Turk. J. Agric. For. 2018, 42, 185–194. DOI: 10.3906/tar-1711-82.
  • Kaya, I.; Yigit, N.; Benli, M. Antimicrobial Activity of Various Extracts of Ocimum basilicum L. and Observation of the Inhibition Effect on Bacterial Cells by Use of Scanning Electron Microscopy. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 363–369. DOI: 10.4314/ajtcam.v5i4.31291.
  • Elgndi, M. A.; Filip, S.; Pavlić, B.; Vladić, J.; Stanojković, T.; Žižak, Ž.; Zeković, Z. Antioxidative and Cytotoxic Activity of Essential Oils and Extracts of Satureja Montana L., Coriandrum Sativum L. and Ocimum basilicum L. obtained by Supercritical Fluid Extraction. J. Supercrit. Fluids. 2017, 128, 128–137. DOI: 10.1016/j.supflu.2017.05.025.
  • Abd El-Azim, Mohamed H. M.; Abdelgawad, Ahmed, A. M.; El-Gerby, M.; Ali, S.; El-Mesallamy, Amani, M. D. Phenolic Compounds and Cytotoxic Activities of Methanol Extract of Basil (Ocimum basilicum L.). J. Microb. Biochem. Technol. 2015, 7, 182–185.
  • Zarlaha, A.; Kourkoumelis, N.; Stanojkovic, T. P.; Kovala-Demertzi, D. Basil (Ocimum basilicum L.): A Source of Valuable Phytonutrients. Dig. J. Nanomater. Biostruct. 2014, 9, 907–917. DOI: 10.15344/2456-8171/2017/118.
  • Vera-Ramirez, L.; Sanchez-Rovira, P.; Ramirez-Tortosa, M. R.; Ramirez-Tortosa, C. L.; Granados-Principal, S.; Lorente, J. A.; Quiles, J. L. Free Radicals in Breast Carcinogenesis, Breast Cancer Progression and Cancer Stem cells. Biological Bases to Develop Oxidative-Based Therapies. Crit. Rev. Oncol. Hematol. 2011, 80, 347–368. DOI: 10.1016/j.critrevonc.2011.01.004.
  • Kähkönen, M. P.; Hopia, A. I.; Vuorela, H. J.; Rauha, J. P.; Pihlaja, K.; Kujala, T. S.; Heinonen, M. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. DOI: 10.1021/jf990146l.
  • Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 Medicinal Plant Extracts for Antioxidant Capacity and Total Phenols. Food Chem. 2006, 94, 550–557. DOI: 10.1016/j.foodchem.2004.12.004.
  • Koleva, I. I.; Van Beek, T. A.; Linssen, J. P. H.; De Groot, A.; Evstatieva, L. N. Screening of Plant Extracts for Antioxidant Activity: A Comparative Study on Three Testing Methods. Phytochem. Anal. 2002, 13, 8–17. DOI: 10.1002/pca.611.
  • Schinella, G. R.; Tournier, H. A.; Prieto, J. M.; Mordujovich de Buschiazzo, P.; Ríos, J. L. Antioxidant Activity of Anti-Inflammatory Plant Extracts. Life Sci. 2002, 70, 1023–1033. DOI: 10.1016/S0024-3205(01)01482-5.
  • Bihari, G. C.; Manaswini, B.; Prabhat, J.; Kumar, T. S. Pharmacognostical and Phytochemical Investigation of Various Tulsi Plants Available in South Eastern Odisha. Int. J. Res. Pharm. Biomed. Sci. 2011, 2, 605–610.
  • Chaudhary, A.; Sharma, S.; Mittal, A.; Gupta, S.; Dua, A. Phytochemical and Antioxidant Profiling of Ocimum Sanctum. J. Food Sci. Technol. 2020. DOI: 10.1007/s13197-020-04417-2.
  • Omoba, O. S.; Olagunju, A. I.; Salawu, S.; O; Boligon, A. A. HPLC-DAD Phenolic Profiling and in Vitro Antioxidant Activities of Three Prominent Nigerian Spices. Prev. Nutr. Food Sci. 2019, 24, 179–186. DOI: 10.3746/pnf.2019.24.2.179.
  • Benedec, L.; Vlase, D.; Hanganu, I.; Oniga, D. Antioxidant Potential and Polyphenolic Content of Romanian Ocimum basilicum. Dig. J. Nanomater. Bios. 2012, 7, 1263–1270.
  • Shen, Y.; Prinyawiwatkul, W.; Lotrakul, P.; Xu, Z. Comparison of Phenolic Profiles and Antioxidant Potentials of the Leaves and Seeds of Thai Holy and Sweet Basils. Int. J. Food Sci. Technol. 2015, 50, 1651–1657. DOI: 10.1111/ijfs.12817.
  • Liang, X.; Jin, Y.; Wang, Y.; Jin, G.; Fu, Q.; Xiao, Y. Review: Qualitative and Quantitative Analysis in Quality Control of Traditional Chinese Medicines. J. Chromatogr. A. 2009, 1216, 2033–2044. DOI: 10.1016/j.chroma.2008.07.026.
  • Bansal, A.; Chhabra, V.; Rawal, R. K.; Sharma, S. Chemometrics: A New Scenario in Herbal Drug Standardization. J. Pharm. Anal. 2014, 4, 223–233. DOI: 10.1016/j.jpha.2013.12.001.
  • Tistaert, C.; Dejaegher, B.; Vander Heyden, Y. Chromatographic Separation Techniques and Data Handling Methods for Herbal Fingerprints: A Review. Anal. Chim. Acta. 2011, 690, 148–161. DOI: 10.1016/j.aca.2011.02.023.
  • Brereton, R. Chemometrics: Data Analysis for the Laboratory and Chemical Plant; John Wiley & Sons: Bristol, 2003.
  • Daszykowski, M.; Walczak, B.; Massart, D. L. Density-Based Clustering for Exploration of Analytical Data. Anal. Bioanal. Chem. 2004, 380, 370–372. DOI: 10.1007/s00216-004-2582-5.
  • Goodarzi, M.; Russell, P. J.; Vander Heyden, Y. Similarity Analyses of Chromatographic Herbal Fingerprints: A Review. Anal. Chim. Acta. 2013, 804, 16–28. DOI: 10.1016/j.aca.2013.09.017.
  • Bagur-González, M. G.; Pérez-Castaño, E.; Sánchez-Viñas, M.; Gázquez-Evangelista, D. Using the Liquid-Chromatographic-Fingerprint of Sterols Fraction to Discriminate Virgin Olive from Other Edible Oils. J. Chromatogr. A. 2015, 1380, 64–70. DOI: 10.1016/j.chroma.2014.12.052.
  • Lucio-Gutiérrez, J. R.; Garza-Juárez, A.; Coello, J.; Maspoch, S.; Salazar-Cavazos, M. L.; Salazar-Aranda, R.; Waksman de Torres, N. Multi-Wavelength High-Performance Liquid Chromatographic Fingerprints and Chemometrics to Predict the Antioxidant Activity of Turnera Diffusa as Part of Its Quality Control. J. Chromatogr. A. 2012, 1235, 68–76. DOI: 10.1016/j.chroma.2012.02.042.
  • Zhu, J.; Fan, X.; Cheng, Y.; Agarwal, R.; Moore, C. M. V.; Chen, S. T.; Tong, W. Chemometric Analysis for Identification of Botanical Raw Materials for Pharmaceutical Use: A Case Study Using Panax Notoginseng. PLOS One. 2014, 9, e87462. DOI: 10.1371/journal.pone.0087462.
  • Adult Cancer Program. SpecAlign—Processing and Alignment of Spectral Datasets. http://powcs.med.unsw.edu.au/research/adult-cancer-program/services-resources/specalign (accessed June 2016).
  • Wong, J. W. H.; Cagney, G.; Cartwright, H. M. SpecAlign-Processing and Alignment of Mass Spectra Datasets. Bioinformatics. 2005, 21, 2088–2090. DOI: 10.1093/bioinformatics/bti300.
  • Wong, J.; Durante, C.; Cartwright, H. Application of Fast Fourier Transform Cross-Correlation for the Alignment of Large Chromatographic and Spectral Datasets. Anal. Chem. 2005, 77, 5655–5661. DOI: 10.1021/ac050619p.
  • Jiang, W.; Zhang, Z. M.; Yun, Y. H.; Zhan, D. J.; Zheng, Y. B.; Liang, Y. Z.; Yang, Z. Y.; Yu, L. Comparisons of Five Algorithms for Chromatogram Alignment. Chromatographia. 2013, 76, 1067–1078. DOI: 10.1007/s10337-013-2513-8.
  • Chen, Y.; Zhu, S. B.; Xie, M. Y.; Nie, S. P.; Liu, W.; Li, C.; Gong, X. F.; Wang, Y. X. Quality Control and Original Discrimination of Ganoderma lucidum Based on High-Performance Liquid Chromatographic Fingerprints and Combined Chemometrics Methods. Anal. Chim. Acta. 2008, 623, 146–156. DOI: 10.1016/j.aca.2008.06.018.
  • Kong, W. J.; Zhao, Y. L.; Xiao, X. H.; Jin, C.; Li, Z. L. Quantitative and Chemical Fingerprint Analysis for Quality Control of Rhizoma coptidischinensis Based on UPLC-PAD combined with Chemometrics Methods. Phytomedicine. 2009, 16, 950–959. DOI: 10.1016/j.phymed.2009.03.016.
  • Wentzell, P. D.; Andrews, D. T.; Hamilton, D. C.; Faber, K.; Kowalski, B. R. Maximum Likelihood Principal Component Analysis. J. Chemometrics. 1997, 11, 339–366. DOI: 10.1002/(SICI)1099-128X(199707)11:4<339::AID-CEM476>3.0.CO;2-L.
  • Ward, J. H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. DOI: 10.1080/01621459.1963.10500845.
  • Alaerts, G.; Van Erps, J.; Pieters, S.; Dumarey, M.; van Nederkassel, A. M.; Goodarzi, M.; Smeyers-Verbeke, J.; Vander Heyden, Y. Similarity Analyses of Chromatographic Fingerprints as Tools for Identification and Quality Control of Green Tea. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 910, 61–70. DOI: 10.1016/j.jchromb.2012.04.031.
  • Cha, S. H. Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. Int. J. Math. Model. Meth. Appl. Sci. 2007, 1, 300–307.
  • Folin, O.; Ciocalteu, V. On Tyrosine and Tryptophane Determinations in Proteins. J. Biol. Chem. 1927, 73, 627–650.
  • Singleton, V. L.; Rossi, J. A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158.
  • Singleton, V. L.; Orthofer, R.; Lamuela-RaventóS, R. M. Analysis of Total Phenols and other oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178.
  • Prior, R. L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302.
  • Pourmorad, F.; Hosseinimehr, S. J.; Shahabimajd, N. Antioxidant Activity of Phenol and Flavonoid Contents of Some Iranian Medicinal Plants. Afr. J. Biotech. 2006, 5, 1142–1145.
  • Brand-Williams, W.; Cuvelier, C.; Berset, C. Use for a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. DOI: 10.1016/S0023-6438(95)80008-5.
  • Gemperline, P. Practical Guide to Chemometrics; Boca Raton: CRC Press, 2006.
  • Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemometr. Intell. Lab. Syst. 2001, 58, 109–130. DOI: 10.1016/S0169-7439(01)00155-1.
  • Geladi, P.; Kowalski, B. R. Partial Least-Squares Regression: A Tutorial. Anal. Chim. Acta. 1986, 185, 1–17. DOI: 10.1016/0003-2670(86)80028-9.
  • Garza-Juárez, A.; Salazar-Cavazos, M. d l L.; Salazar-Aranda, R.; Pérez-Meseguer, J.; de Torres, N. W. Correlation Between Chromatographic Fingerprint and Antioxidant Activity of Turnera diffusa (Damiana). Planta Med. 2011, 77, 958–963. DOI: 10.1055/s-0030-1250684.
  • Dumarey, M.; Van Nederkassel, A. M.; Deconinck, E.; Vander Heyden, Y. Exploration of Linear Multivariate Calibration Techniques to Predict the Total Antioxidant Capacity of Green Tea from Chromatographic Fingerprints. J. Chromatogr. A. 2008, 1192, 81–88. DOI: 10.1016/j.chroma.2008.03.052.
  • Van Nederkassel, A. M.; Daszykowski, M.; Massart, D. L.; Vander Heyden, Y. Prediction of Total Green Tea Antioxidant Capacity from Chromatograms by Multivariate Modeling. J. Chromatogr. A. 2005, 1096, 177–186. DOI: 10.1016/j.chroma.2005.03.102.
  • Aloglu, A. K.; Harrington, P.; B; Sahin, S.; Demir, C. Prediction of Total Antioxidant Activity of Prunella L. species by Automatic Partial Least Square Regression Applied to 2-Way Liquid Chromatographic UV Spectral Images. Talanta. 2016, 161, 503–510. DOI: 10.1016/j.talanta.2016.09.014.
  • Chen, F. F.; Qi, H. Y.; Shi, Y. P. Fingerprint Analysis of Codonopsis Radix by HPLC Coupled with Chemometrics Analysis. Chin. Herb. Med. 2013, 5, 307–312. DOI: 10.1016/S1674-6384(13)60046-5.
  • Zhou, X.; Tang, L.; Wu, H.; Zhou, G.; Wang, T.; Kou, Z.; Li, S.; Wang, Z. Chemometric Analyses for the Characterization of Raw and Processedseeds of Descurainia Sophia (L.) Based on HPLC Fingerprints. J. Pharm. Biomed. Anal. 2015, 111, 1–6. DOI: 10.1016/j.jpba.2015.03.010.
  • Peng, L.; Wang, Y.; Zhu, H.; Chen, Q. Fingerprint Profile of Active Components for Artemisia Selengensis Turcz by HPLC–PAD Combined with Chemometrics. Food Chem. 2011, 125, 1064–1071. DOI: 10.1016/j.foodchem.2010.09.079.
  • Feng, X.; Kong, W.; Wei, J.; Ou-Yang, Z.; Yang, M. HPLC Fingerprint Analysis Combined with Chemometrics for Pattern Recognition of Ginger. Pharm. Biol. 2014, 52, 362–367. DOI: 10.3109/13880209.2013.837493.
  • Sajewicz, M.; Staszek, D.; Wróbel, M. S.; Waksmundzka-Hajnos, M.; Kowalska, T. The HPLC/DAD Fingerprints and Chemometric Analysis of Flavonoid Extracts from the Selected Sage (Salvia) Species. Chromatogr. Res. Int. 2012, 2012, 1–8. DOI: 10.1155/2012/230903.
  • Wang, L.; Wang, X.; Kong, L. Automatic Authentication and Distinction of Epimedium Koreanum and Epimedium wushanense with HPLC Fingerprint Analysis Assisted by Pattern Recognition Techniques. Biochem. Syst. Ecol. 2012, 40, 138–145. DOI: 10.1016/j.bse.2011.10.014.
  • Hawrył, A. M.; Ziobro, A.; Swieboda, R. S.; Hawrył, M. A.; Chernetskyy, M.; Waksmundzka-Hajnos, M. The HPLC Fingerprint Analysis of Selected Cirsium Species with Aid of Chemometrics. J. Braz. Chem. Soc. 2016, 27, 1736–1743.
  • Javanmardi, J.; Khalighi, A.; Kashi, A.; Bais, H. P.; Vivanco, J. M. Chemical Characterization of Basil (Ocimum basilicum L.) Found in Local Accessions and Used in Traditional Medicines in Iran. J. Agric. Food Chem. 2002, 50, 5878–5883. DOI: 10.1021/jf020487q.
  • Lee, J.; Scagel, C. F. Chicoric Acid Found in Basil (Ocimum basilicum L.) Leaves. Food Chem. 2009, 115, 650–656. DOI: 10.1016/j.foodchem.2008.12.075.
  • Lu, Y.; Gao, B.; Chen, P.; Charles, D.; Yu, L. Characterization of Organic and Conventional Sweet Basil Leaves Using Chromatographic and Flow-Injection Mass Spectrometric (FIMS) Fingerprints Combined with Principal Component Analysis. Food Chem. 2014, 154, 262–268. DOI: 10.1016/j.foodchem.2014.01.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.