84
Views
0
CrossRef citations to date
0
Altmetric
Articles

Adsorption of mandelic acid enantiomers on chiral stationary phase with grafted antibiotic eremomycin: The effect of the eluent pH

References

  • Felinger, A.; Cavazzini, A.; Guiochon, G. Numerical Determination of the Competitive Isotherm of Enantiomers. J. Chromatogr. A. 2003, 986, 207–225. DOI: 10.1016/S0021-9673(02)01919-2.
  • Guiochon, G.; Felinger, A.; Katti, A. M.; Shirazi, S. G. Fundamentals of Preparative and Nonlinear Chromatography, 2nd ed.; Academic Press: Boston, MA, 2006.
  • Arnell, R.; Forssén, P.; Fornstedt, T. Tuneable Peak Deformations in Chiral Liquid Chromatography. Anal. Chem. 2007, 79, 5838–5847. DOI: 10.1021/ac062330t.
  • Forssén, P.; Arnell, R.; Kaspereit, M.; Seidel-Morgenstern, A.; Fornstedt, T. Effects of a Strongly Adsorbed Additive on Process Performance in Chiral Preparative Chromatography. J. Chromatogr. A. 2008, 1212, 89–97. DOI: 10.1016/j.chroma.2008.10.040.
  • Reshetova, E. N.; Asnin, L. D. Adsorption of Ibuprofen Enantiomers on a Chiral Stationary Phase with a Grafted Antibiotic Eremomycin. Russ. J. Phys. Chem. 2015, 89, 275–281. DOI: 10.1134/S0036024415020259.
  • Åsberg, D.; Leśko, M.; Samuelsson, J.; Karlsson, A.; Kaczmarski, K.; Fornstedt, T. Combining Chemometric Models with Adsorption Isotherm Measurements to Study Omeprazole in RP-LC. Chromatographia 2016, 79, 1283–1291. DOI: 10.1007/s10337-016-3151-8.
  • Kazakevich, Y. V. High-Performance Liquid Chromatography Retention Mechanisms and Their Mathematical Descriptions. J. Chromatogr. A. 2006, 1126, 232–243. DOI: 10.1016/j.chroma.2006.05.022.
  • Gritti, F.; Guiochon, G. Effect of the Ionic Strength of Salts on Retention and Overloading Behavior of Ionizable Compounds in Reversedphase Liquid Chromatography. I. XTerra-C18. J. Chromatogr. A. 2004, 1033, 43–55. DOI: 10.1016/j.chroma.2004.01.027.
  • Gritti, F.; Guiochon, G. Peak Shapes of Acids and Bases under Overloaded Conditions in Reversed-Phase Liquid Chromatography, with Weakly Buffered Mobile Phases of Various pH: A Thermodynamic Interpretation. J. Chromatogr. A. 2009, 1216, 63–78. DOI: 10.1016/j.chroma.2008.11.020.
  • Asnin, L.; Kaczmarski, K.; Guiochon, G. Features of the Adsorption of Naproxen Enantiomers on Weak Chiral Anion-Exchangers in Nonlinear Chromatography. J. Chromatogr. A. 2008, 1192, 62–73. DOI: 10.1016/j.chroma.2008.03.023.
  • Asnin, L.; Kaczmarski, K.; Guiochon, G. The Adsorption of Naproxen Enantiomers on the Chiral Stationary Phase Whelk-O1 under Reversed-Phase Conditions: The Effect of Buffer Composition. J. Chromatography A. 2010, 1217, 7055–7064. DOI: 10.1016/j.chroma.2010.08.073.
  • Gritti, F.; Guiochon, G. Adsorption Mechanism of Acids and Bases in Reversed-Phase Liquid Chromatography in Weak Buffered Mobile Phases Designed for Liquid Chromatography/Mass Spectrometry. J. Chromatogr. A. 2009, 1216, 1776–1788. DOI: 10.1016/j.chroma.2008.10.064.
  • Gritti, F.; Guiochon, G. Band Profiles of Reacting Acido-Basic Compounds with Water-Methanol Eluents at Different SWpHs and Ionic Strengths in Reversed-Phase Liquid Chromatography. J. Chromatogr. A. 2009, 1216, 3175–3184. DOI: 10.1016/j.chroma.2009.02.013.
  • Asnin, L. D.; Guiochon, G. Retention of Naproxen Enantiomers on the Chiral Stationary Phase Whelk-O1 under Reversed-Phase Conditions. A Reconsideration of the Adsorption Mechanism in the Light of New Experimental Data. J. Chromatogr. A. 2010, 1217, 1709–1711. DOI: 10.1016/j.chroma.2010.01.017.
  • Reshetova, E. N.; Asnin, L. D.; Kachmarsky, K. Effect of Secondary Equilibria on the Adsorption of Ibuprofen Enantiomers on a Chiral Stationary Phase with a Grafted Antibiotic Eremomycin. Russ. J. Phys. Chem. 2018, 92, 361–367. DOI: 10.1134/S0036024418010223.
  • Gritti, F.; Guiochon, G. Adsorption Behavior of the Three Species of the Biprotic Peptide Phe-Ala onto an End-Capped C18-Bonded Organic/Inorganic Hybrid Stationary Phase. Anal. Chem. 2009, 81, 9871–9884. DOI: 10.1021/ac902027t.
  • Berthod, A.; Qiu, H. X.; Staroverov, S. M.; Kuznestov, M. A.; Armstrong, D. W. Chiral Recognition with Macrocyclic Glycopeptides: mechanisms and Applications. In Chiral Recognition in Separation Methods: Mechanisms and Applications; Berthod, A., ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2010.
  • Reshetova, E. N.; Asnin, L. D. Effect of the Ionic Composition of a Mobile Phase on the Chromatographic Retention of Profen Enantiomers on a Chiral Adsorbent with Grafted Eremomycin Antibiotic. Russ. J. Phys. Chem. 2011, 85, 1434–1439. DOI: 10.1134/S0036024411080280.
  • Reshetova, E. Chromatographic Retention and Thermodynamics of the Adsorption of α-Phenylcarboxylic Acid Enantiomers on a Chiral Stationary Phase with a Grafted Antibiotic Eremomycin: Effect of Eluent pH. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 145–153. DOI: 10.1080/10826076.2015.1137004.
  • Poplewska, I.; Kramarz, R.; Piątkowski, W.; Seidel-Morgenstern, A.; Antos, D. Influence of Preferential Adsorption of Mobile Phase on Retention Behavior of Amino Acids on the Teicoplanin Chiral Selector. J. Chromatography A. 2007, 1173, 58–70. DOI: 10.1016/j.chroma.2007.09.076.
  • Staroverov, S. M.; Kuznetsov, M. A.; Nesterenko, P. N.; Vasiarov, G. G.; Katrukha, G. S.; Fedorova, G. B. New Chiral Stationary Phase with Macrocyclic Glycopeptide Antibiotic Eremomycin Chemically Bonded to Silica. J. Chromatogr. A. 2006, 1108, 263–267. DOI: 10.1016/j.chroma.2006.01.073.
  • Kuznetsov, M. A.; Nesterenko, P. N.; Vasiyarov, G. G.; Staroverov, S. M. High-Performance Liquid Chromatography of α-Amino Acid Enantiomers on Eremomycin-Modified Silica. J. Anal. Chem. 2008, 63, 57–64. DOI: 10.1134/S1061934808010115.
  • Natykan, A. A.; Sycheva, K.; Yu Chernobrovkin, M. G.; Shapovalova, E. N.; Shpigun, O. A. Chromatographic Determination of Amino Acids and Their Optical Isomers Using the Nautilus-E Column. Zavod. Lab. Materials Diagnostics 2011, 77, 18–21. [in Russian].
  • Reshetova, E. N.; Asnin, L. D. The Chromatographic Behavior and Thermodynamic Characteristics of Adsorption of Profen Enantiomers on Silica Gel with Grafted Eremomycin Antibiotic. Russ. J. Phys. Chem. 2009, 83, 547–551. DOI: 10.1134/S0036024409040062.
  • Reshetova, E. N.; Gogolishvili, O. Sh. Adsorption of Mandelic Acid Enantiomers on a Chiral Stationary Phase with a Grafted Antibiotic Eremomycin. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 561–571. DOI: 10.1080/10826076.2018.1459305.
  • Ilisz, I.; Berkecz, R.; Péter, A. Retention Mechanism of High-Performance Liquid Chromatographic Enantioseparation on Macrocyclic Glycopeptide-Based Chiral Stationary Phases. J. Chromatogr. A. 2009, 1216, 1845–1860. DOI: 10.1016/j.chroma.2008.08.041.
  • Petrusevska, K.; Kuznetsov, M. A.; Gedicke, K.; Meshko, V.; Staroverov, S. M.; Seidel-Morgenstern, A. Chromatographic Enantioseparation of Amino Acids Using a New Chiral Stationary Phase Based on a Macrocyclic Glycopeptide Antibiotic. J. Sep. Sci. 2006, 29, 1447–1457. DOI: 10.1002/jssc.200600036.
  • Nair, U. B.; Chang, S. S. C.; Armstrong, D. W.; Rawjee, Y. Y.; Eggleston, D. S.; McArdle, J. V. Elucidation of Vancomycin's Enantioselective Binding Site Using Its Copper Complex. Chirality 1996, 8, 590–595. DOI: 10.1002/(SICI)1520-636X(1996)8:8<590::AID-CHIR9>3.0.CO;2-D.
  • Kuznetsov MA (2008) Enantioselective sorbents with immobilized macrocyclic glycopeptide antibiotics. PhD thesis. Moscow. p 131. The Russian State Library (In Russian). https://www.rsl.ru
  • D’Acquarica, I.; Gasparrini, F.; Misiti, D.; Pierini, M.; Villani, C. HPLC Chiral Stationary Phases Containing Macrocyclic Antibiotics: practical Aspects and Recognition Mechanisms. In Adv. Chromatogr; Grushka, E., Grinberg, N., Eds.; CRC Press: Boca-Raton, FL, 2008; pp. 109–173; , Vol. 46.
  • Boehm, R. E.; Martire, D. E.; Armstrong, D. W. Theoretical Considerations Concerning the Separation of Enantiomeric Solutes by Liquid Chromatography. Anal. Chem. 1988, 60, 522–528. DOI: 10.1021/ac00157a006.
  • Jandera, P.; Bunčeková, S.; Mihlbachler, K.; Guiochon, G.; Bačkovská, V.; Planeta, J. Fitting Adsorption Isotherms to the Distribution Data Determined Using Packed Micro-Columns for High-Performance Liquid Chromatography. J. Chromatogr. A 2001, 925, 19–29. DOI: 10.1016/S0021-9673(01)01002-0.
  • Jander, P.; Backovská, V.; Felinger, A. Analysis of the Band Profiles of the Enantiomers of Phenylglycine in Liquid Chromatography on Bonded Teicoplanin Columns Using the Stochastic Theory of Chromatography. J. Chromatogr. A. 2001, 919, 67–77. DOI: 10.1016/s0021-9673(01)00783-x.
  • Kaspereit, M.; Jandera, P.; Škavrada, M.; Seidel-Morgenstern, A. Impact of Adsorption Isotherm Parameters on the Performance of Enantioseparation Using Simulated Moving Bed Chromatography. J. Chromatogr. A. 2002, 944, 249–262. DOI: 10.1016/s0021-9673(01)01341-3.
  • Cavazzini, A.; Pasti, L.; Dondi, F.; Finessi, M.; Costa, V.; Gasparrini, F.; Ciogli, A.; Bedani, F. Binding of Dipeptides and Amino Acids to Teicoplanin Chiral Stationary Phase: Apparent Homogeneity of Some Heterogeneous Systems. Anal. Chem. 2009, 81, 6735–6743. DOI: 10.1021/ac900677f.
  • Jandera, P.; Škavrada, M.; Klemmová, K.; Bačkovská, V.; Guiochon, G. Effect of the Mobile Phase on the Retention Behaviour of Optical Isomers of Carboxylic Acids and Amino Acids in Liquid Chromatography on Bonded Teicoplanin Columns. J. Chromatogr. A. 2001, 917, 123–133. DOI: 10.1016/s0021-9673(01)00701-4.
  • Zhang, L.; Gedicke, K.; Kuznetsov, M. A.; Staroverov, S. M.; Seidel-Morgenstern, A. Application of an Eremomycin-Chiral Stationary Phase for the Separation of DL-Methionine Using Simulated Moving Bed Technology. J. Chromatogr. A. 2007, 1162, 90–96. DOI: 10.1016/j.chroma.2007.04.033.
  • Charton, F.; Bailly, M.; Guiochon, G. Recycling in Preparative Liquid Chromatography. J. Chromatogr. A. 1994, 687, 13–31. DOI: 10.1016/0021-9673(94)00728-4.
  • Fornstedt, T.; Sajonz, P.; Guiochon, G. A Closer Study of Chiral Retention Mechanisms. Chirality 1998, 10, 375–381. DOI: 10.1002/(SICI)1520-636X(1998)10:5<375::AID-CHIR3>3.0.CO;2-5.
  • Bates, R. G. National Bureau of Standards. Determination of pH. Theory and Practice; John Wiley & Sons Inc: New York, London, Sydney, 1964.
  • Canals, I.; Oumada, F. Z.; Rosés, M.; Bosch, E. Retention of Ionizable Compounds on HPLC. 6. pH Measurements with the Glass Electrode in Methanol–Water Mixtures. J. Chromatogr. 2001, 911, 191–202. DOI: 10.1016/S0021-9673(00)01271-1.
  • Canals, I.; Portal, J. A.; Bosch, E.; Rosés, M. Retention of Ionizable Compounds on HPLC. 4. Mobile-Phase pH Measurement in Methanol/Water. Anal. Chem. 2000, 72, 1802–1809. DOI: 10.1021/ac990943i.
  • Oumada, F. Z.; Ràfols, C.; Rosés, M.; Bosch, E.; et. al. Chromatographic Determination of Aqueous Dissociation Constants of Some Water-Insoluble Nonsteroidal Antiinflammatory Drugs. J. Pharm. Sci. 2002, 91, 991–999. DOI: 10.1002/jps.10096.
  • Nikitina, Y. K.; Ali, I.; Asnin, L. D. Adsorption of Aqueous Organic Mixtures on a Chiral Stationary Phase with Bound Antibiotic Eremomycin. J. Chromatogr. A. 2014, 1363, 71–78. DOI: 10.1016/j.chroma.2014.08.062.
  • Lanin, S. N.; Ledenkova, M. Y.; Nikitin, Y. S. Calculation of Sorption Isotherms from the Retention Parameters in High-Performance Liquid Chromatography. Mendeleev. Commun. 2000, 10, 37–38. DOI: 10.1070/MC2000v010n01ABEH001191.
  • Kaczmarski, K. Estimation of Adsorption Isotherm Parameters with Inverse Method: Possible Problems. J. Chromatography A 2007, 1176, 57–68. DOI: 10.1016/j.chroma.2007.08.005.
  • Guiochon, G. Preparative Liquid Chromatography. J. Chromatogr. A. 2002, 965, 129–161. DOI: 10.1016/s0021-9673(01)01471-6.
  • Rachinskii, V. V. An Introduction to the General Theory of Sorptional and Chromatography Dynamics; Nauka: Moscow, 1964. [in Russian]
  • Danckwerts, P. W. Continuous Flow Systems: Distribution of Residence Times. Chem. Eng. Sci. 1953, 2, 1–13. DOI: 10.1016/0009-2509(53)80001-1.
  • Kaczmarski, K.; Mazzotti, M.; Storti, G.; Morbidelli, M. Modeling Fixed-Bed Adsorption Columns through Orthogonal Collocations on Moving Finite Elements. Comput. Chem. Eng. 1997, 21, 641–660. DOI: 10.1016/S0098-1354(96)00300-6.
  • Kaczmarski, K. Use of Orthogonal Collocation on Finite Elements with Moving Boundaries in the Simulation of Non-Linear Multicomponent Chromatography. Influence of Fluid Velocity Variation on Retention Time in LC and HPLC. Comput. Chem. Eng. 1996, 20, 49–64. DOI: 10.1016/0098-1354(95)00004-L.
  • Kaczmarski, K.; Antos, D. Calculation of Chromatographic Band Profiles with an Implicit Isotherm. J. Chromatogr. A. 1999, 862, 1–16. DOI: 10.1016/s0021-9673(99)00901-2.
  • Fletcher, R. A Modified Marquardt Sub-Routine for Non-Linear Least Squares. Atomic Energy Research Establishment report R6799. 27 p. Harwell 1971.
  • Prokhorova, A. F.; Shapovalova, E. N.; Shpak, A. V.; Staroverov, S. M.; Shpigun, O. A. Enantiorecognition of Profens by Capillary Electrophoresis Using a Novel Chiral Selector Eremomycin. J. Chromatogr. A. 2009, 1216, 3674–3677. DOI: 10.1016/j.chroma.2009.02.017.
  • Kiselev, A. V.; Johansen, A. V.; Sakodynsky, K. I.; Sakharov, V. M.; Yashin, J. I.; Karnaukhov, A. P.; Buyanova, N. E.; Kurkchi, G. A. Physic-Chemical Application  of Gas Chromatography; Chemistry: Moscow, 1973. [in Russian]
  • Chen, Y.; Kele, M.; Quiñones, I.; Sellergren, B.; Guiochon, G. Influence of the pH on the Behavior of an Imprinted Polymeric Stationary Phase — Supporting Evidence for a Binding Site Model. J. Chromatogr. A. 2001, 927, 1–17. DOI: 10.1016/S0021-9673(01)01019-6.
  • Asnin, L.; Kaczmarski, K.; Felinger, A.; Gritti, F.; Guiochon, G. Adsorption of the Enantiomers of 3-Chloro-1-Phenyl-Propanol on Silica-Bonded Chiral Quinidine Carbamate. J. Chromatogr. A. 2006, 1101, 158–170. DOI: 10.1016/j.chroma.2005.09.078.
  • Bechtold, M.; Heinemann, M.; Panke, S. Suitability of Teicoplanin–Aglycone Bonded Stationary Phase for Simulated Moving Bed Enantioseparation of Racemic Amino Acids Employing Composition-Constrained Eluents. J. Chromatography A. 2006, 1113, 167–176. DOI: 10.1016/j.chroma.2006.02.007.
  • Asnin, L. Adsorption Models in Chiral Chromatography. J. Chromatogr. A. 2012, 1269, 3–25. DOI: 10.1016/j.chroma.2012.08.096.
  • Cavazzini, A.; Felinge, A.; Kaczmars, K.; Szabelsk, P.; Guiochon, G. Study of the Adsorption Equilibria of the Enantiomers of 1-Phenyl-1-Propanol on Cellulose Tribenzoate Using a Microbore Column. J. Chromatogr. A. 2002, 953, 55–66. DOI: 10.1016/s0021-9673(02)00150-4.
  • Fornstedt, T.; Götmar, G.; Andersson, M.; Guiochon, G. Dependence on the Mobile-Phase pH of the Adsorption Behavior of Propranolol Enantiomers on a Cellulase Protein Used as the Chiral Selector. J. Am. Chem. Soc. 1999, 121, 1164–1174.
  • Asnin, L. D.; Cavazzini, A.; Marchetti, N. Solute-Stationary Phase Interaction in Chiral Chromatography. Adv. Chromatogr. 2016, 53, 1–73.
  • Götmar, G.; Albareda, N. R.; Fomstedt, T. Investigation of the Heterogeneous Adsorption Behavior of Selected Enantiomers on Immobilized Alpha1-Acid Glycoprotein. Anal. Chem. 2002, 74, 2950–2959. DOI: 10.1021/ac011182y.
  • Asnin, L.; Gritti, F.; Kaczmarski, K.; Guiochon, G. () Features of the Adsorption of Naproxen on the Chiral Stationary Phase (S,S)-Whelk-O1 under Reversed-Phase Conditions. J. Chromatogr. A. 2010, 1217, 264–275. DOI: 10.1016/j.chroma.2009.11.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.