3,414
Views
0
CrossRef citations to date
0
Altmetric
Articles

A new LC-MS/MS technique for separation of gangliosides using a phenyl-hexyl column: Systematic separation according to sialic acid class and ceramide subclass

, , &

References

  • Aureli, M.; Mauri, L.; Ciampa, M. G.; Prinetti, A.; Toffano, G.; Secchieri, C.; Sonnino, S. GM1 Ganglioside: Past Studies and Future Potential. Mol. Neurobiol. 2016, 53, 1824–1842. DOI: 10.1007/s12035-015-9136-z.
  • Chester, M. A. Nomenclature of Glycolipids. Pure Appl. Chem. 1997, 69, 2475–2487. DOI: 10.1351/pac199769122475.
  • Gobburi, A. L. P.; Zhang, R.; Willard, B.; Inman, D.; Anderson, D. Heterogeneous Ganglioside Standards in LC-MS/MS: Sensitive Method for Quantifying the Major Molecular Components in Mono-Sialo Ganglioside Standards. J. Anal. Bioanal. Tech. 2015, S13, 009. DOI: 10.4172/2155-9872.s13-009.
  • Tettamanti, G.; Anastasia, L. Chemistry, Tissue and Cellular Distribution, and Developmental Profiles of Neural Sphingolipids. In Handbook of Neurochemistry and Molecular Neurobiology: Neural Lipids, Vol. 14; Lajtha, A., Ed., Tettamanti, G., Goracci, G., Volume Eds.; Springer Science + Business Media LLC: New York, NY, 2009; pp. 99–169.
  • Ando, S.; Yu, R. K. Fatty Acid and Long-Chain Base Composition of Gangliosides Isolated from Adult Human Brain. J. Neurosci. Res. 1984, 12, 205–211. DOI: 10.1002/jnr.490120208.
  • Sonnino, S.; Chigorno, V. Ganglioside Molecular Species Containing C18- and C20- Sphingosine in Mammalian Nervous Tissues and Neuronal Cell Cultures, Biochim. Biophys. Acta. 2000, 1469, 63–77. DOI: 10.1016/S0005-2736(00)00210-8.
  • Yu, R. K.; Yanagisawa, M.; Ariga, T.; Glycosphingolipid Structures. In Comprehensive Glycoscience: From Chemistry to Systems Biology Volume 1 - Introduction to Glycoscience: Synthesis of Carbohydrates; Kamerling, J. P., Editor- in-Chief, Boons, G. –J., Lee, Y. C., Suzuki, A., Taniguchi, N., Voragen, A. G. J., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2007; pp. 73–122. DOI: 10.1016/B978-044451967-2/00003-9.
  • Sarbu, M.; Dehelean, L.; Munteanu, C. V. A.; Vukelić, Ž.; Zamfir, A. D. Assessment of Ganglioside Age-Related and Topographic Specificity in Human Brain by Orbitrap Mass Spectrometry. Anal. Biochem. 2017, 521, 40–54. DOI: 10.1016/j.ab.2017.01.010.
  • Flangea, C.; Fabris, D.; Vukelić, Ž.; Zamfir, A. D. Mass Spectrometry of Gangliosides from Human Sensory and Motor Cortex. Aust. J. Chem. 2013, 66, 781–790. DOI: 10.1071/CH13173.
  • Zamfir, A. D.; Fabris, D.; Capitan, F.; Munteanu, C.; Vukelić, Ž.; Flangea, C. Profiling and Sequence Analysis of Gangliosides in Human Astrocytoma by High-Resolution Mass Spectrometry. Anal. Bioanal. Chem. 2013, 405, 7321–7335. DOI: 10.1007/s00216-013-7173-x.
  • Hama, H. Fatty Acid 2-Hydroxylation in Mammalian Sphingolipid Biology. Biochim. Biophys. Acta. 2010, 1801, 405–414. DOI: 10.1016/j.bbalip.2009.12.004.
  • Bouhours, J.-F.; Bouhours, D.; Hansson, G. C. Developmental Changes of Gangliosides of the Rat Stomach. Appearance of a Blood Group B-Active Ganglioside. J. Biol. Chem. 1987, 262, 16370–16375.
  • Ostrander, G. K.; Levery, S. B.; Hakomori, S.; Holmes, E. H. Isolation and Characterization of the Major Acidic Glycosphingolipids from the Liver of the English Sole (Parophrys Vetulus). Presence of a Novel Ganglioside with a Forssman Antigen Determinant. J. Biol. Chem. 1988, 263, 3103–3110.
  • Keränen, A. Fatty Acids and Long-Chain Bases of Gangliosides of Human Gastrointestinal Mucosa. Chem. Phys. Lipids. 1976, 17, 14–21. DOI: 10.1016/0009-3084(76)90032-3.
  • Van Dessel, G. A. F.; Lagrou, A. R.; Hilderson, H. J. J.; Dierick, W. S. H.; Lauwers, W. F. J. Structure of the Major Gangliosides from Bovine Thyroid. J. Biol. Chem. 1979, 254, 9305–9310.
  • Ledeen, R.; Salsman, K. Fatty Acid and Long Chain Base Composition of Adrenal Medulla Gangliosides. Lipids. 1970, 5, 751–756. DOI: 10.1007/BF02531387.
  • Puro, K.; Keränen, A. Fatty Acids and Sphingosines of Bovine-Kidney Gangliosides. Biochim. Biophys. Acta. 1969, 187, 393–400. DOI: 10.1016/0005-2760(69)90013-7.
  • Yu, R. K.; Ledeen, R. W. Gangliosides of Human, Bovine, and Rabbit Plasma. J. Lipid Res. 1972, 13, 680–686.
  • Nekrasov, E.; Hubl, U. Gangliosides. In Sialobiology: Structure, Biosynthesis and Function. Sialic Acid Glycoconjugates in Health and Disease; Tiralongo, J., Martinez-Duncker, I., Eds.; Bentham Science Publishers: Oak Park, IL, 2013; pp. 313–380. DOI: 10.2174/97816080538651130101.
  • Garcia, A. D.; Chavez, J. L.; Mechref, Y. Rapid and Sensitive LC-ESI-MS of Gangliosides. J Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 947–948, 1–7. DOI: 10.1016/j.jchromb.2013.11.025.
  • Ikeda, K.; Taguchi, R. Highly Sensitive Localization Analysis of Gangliosides and Sulfatides Including Structural Isomers in Mouse Cerebellum Sections by Combination of Laser Microdissection and Hydrophilic Interaction Liquid Chromatography/Electrospray Ionization Mass Spectrometry with Theoretically Expanded Multiple Reaction Monitoring. Rapid Commun. Mass Spectrom. 2010, 24, 2957–2965. DOI: 10.1002/rcm.4716.
  • Fong, B.; Norris, C.; Lowe, E.; McJarrow, P. Liquid Chromatography-High-Resolution Mass Spectrometry for Quantitative Analysis of Gangliosides. Lipids. 2009, 44, 867–874. DOI: 10.1007/s11745-009-3327-1.
  • Oikawa, N.; Matsubara, T.; Fukuda, R.; Yasumori, H.; Hatsuta, H.; Murayama, S.; Sato, T.; Suzuki, A.; Yanagisawa, K. Imbalance in Fatty-Acid-Chain Length of Gangliosides Triggers Alzheimer Amyloid Deposition in the Precuneus. PLoS One. 2015, 10, e0121356. DOI: 10.1371/journal.pone.0121356.
  • Nagafuku, M.; Okuyama, K.; Onimaru, Y.; Suzuki, A.; Odagiri, Y.; Yamashita, T.; Iwasaki, K.; Fujiwara, M.; Takayanagi, M.; Ohno, I.; Inokuchi, J.-I. CD4 and CD8 T Cells Require Different Membrane Gangliosides for Activation. Proc. Natl. Acad. Sci. USA. 2012, 109, E336–E342. DOI: 10.1073/pnas.1114965109.
  • Khoury, S.; Masson, E.; Sibille, E.; Cabaret, S.; Berdeaux, O. Rapid Sample Preparation for Ganglioside Analysis by Liquid Chromatography Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1137, 121956. DOI: 10.1016/j.jchromb.2019.121956.
  • Masson, E. A. Y.; Sibille, E.; Martine, L.; Chaux-Picquet, F.; Bretillon, L.; Berdeaux, O. Apprehending Ganglioside Diversity: A Comprehensive Methodological Approach. J. Lipid Res. 2015, 56, 1821–1835. DOI: 10.1194/jlr.D060764.
  • Sørensen, L. K. A Liquid Chromatography/Tandem Mass Spectrometric Approach for the Determination of Gangliosides GD3 and GM3 in Bovine Milk and Infant Formulae. Rapid Commun. Mass Spectrom. 2006, 20, 3625–3633. DOI: 10.1002/rcm.2775.
  • Zhang, J.; Ren, Y.; Huang, B.; Tao, B.; Pedersen, M. R.; Li, D. Determination of Disialoganglioside GD3 and Monosialoganglioside GM3 in Infant Formulas and Whey Protein Concentrates by Ultra-Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. J. Sep. Sci. 2012, 35, 937–946. DOI: 10.1002/jssc.201101039.
  • Giuffrida, F.; Elmelegy, I. M.; Thakkar, S. K.; Marmet, C.; Destaillats, F. Longitudinal Evolution of the Concentration of Gangliosides GM3 and GD3 in Human Milk. Lipids. 2014, 49, 997–1004. DOI: 10.1007/s11745-014-3943-2.
  • Lee, J.; Hwang, H.; Kim, S.; Hwang, J.; Yoon, J.; Yin, D.; Choi, S. I.; Kim, Y.-H.; Kim, Y.-S.; An, H. J. Comprehensive Profiling of Surface Gangliosides Extracted from Various Cell Lines by LC-MS/MS. Cells. 2019, 8, 1323. DOI: 10.3390/cells8111323.
  • Li, Q.; Sun, M.; Yu, M.; Fu, Q.; Jiang, H.; Yu, G.; Li, G. Gangliosides Profiling in Serum of Breast Cancer Patient: GM3 as a Potential Diagnostic Biomarker. Glycoconj. J. 2019, 36, 419–428. DOI: 10.1007/s10719-019-09885-z.
  • Hu, T.; Jia, Z.; Zhang, J.-L. Strategy for Comprehensive Profiling and Identification of Acidic Glycosphingolipids Using Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry. Anal. Chem. 2017, 89, 7808–7816. DOI: 10.1021/acs.analchem.7b02023.
  • Ikeda, K.; Shimizu, T.; Taguchi, R. Targeted Analysis of Ganglioside and Sulfatide Molecular Species by LC/ESI-MS/MS with Theoretically Expanded Multiple Reaction Monitoring. J. Lipid Res. 2008, 49, 2678–2689. DOI: 10.1194/jlr.D800038-JLR200.
  • Bocian, S.; Skoczylas, M.; Goryńska, I.; Matyska, M.; Pesek, J.; Buszewski, B. Solvation Processes on Phenyl-Bonded Stationary Phases-The Influence of Polar Functional Groups. J. Sep. Sci. 2016, 39, 4369–4376. DOI: 10.1002/jssc.201600799.
  • Croes, K.; Steffens, A.; Marchand, D. H.; Snyder, L. R. Relevance of π-π and Dipole-Dipole Interactions for Retention on Cyano and Phenyl Columns in Reversed-Phase Liquid Chromatography. J. Chromatogr. A. 2005, 1098, 123–130. DOI: 10.1016/j.chroma.2005.08.090.
  • Yang, M.; Fazio, S.; Munch, D.; Drumm, P. Impact of Methanol and Acetonitrile on Separations Based on π-π Interactions with a Reversed-Phase Phenyl Column. J. Chromatogr. A. 2005, 1097, 124–129. DOI: 10.1016/j.chroma.2005.08.028.
  • Marchand, D. H.; Croes, K.; Dolan, J. W.; Snyder, L. R.; Henry, R. A.; Kallury, K. M. R.; Waite, S.; Carr, P. W. Column Selectivity in Reversed-Phase Liquid Chromatography VIII. Phenylalkyl and Fluoro-Substituted Columns. J. Chromatogr. A. 2005, 1062, 65–78. DOI: 10.1016/j.chroma.2004.11.014.
  • Stevenson, P. G.; Kayillo, S.; Dennis, G. R.; Shalliker, R. A. Effects of π-π Interactions on the Separation of PAHs on Phenyl-Type Stationary Phases. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 324–347. DOI: 10.1080/10826070701780607.
  • Wheeler, S. E.; Houk, K. N. Are Anion/π Interactions Actually a Case of Simple Charge-Dipole Interactions? J. Phys. Chem. A. 2010, 114, 8658–8664. DOI: 10.1021/jp1010549.
  • Stevenson, P. G.; Soliven, A.; Dennis, G. R.; Gritti, F.; Guiochon, G.; Shalliker, R. A. π-Selective Stationary Phases: (III) Influence of the Propyl Phenyl Ligand Density on the Aromatic and Methylene Selectivity of Aromatic Compounds in Reversed Phase Liquid Chromatography. J. Chromatogr. A. 2010, 1217, 5377–5383. DOI: 10.1016/j.chroma.2010.05.029.
  • Euerby, M. R.; Petersson, P.; Campbell, W.; Roe, W. Chromatographic Classification and Comparison of Commercially Available Reversed-Phase Liquid Chromatographic Columns Containing Phenyl Moieties Using Principal Component Analysis. J. Chromatogr. A. 2007, 1154, 138–151. DOI: 10.1016/j.chroma.2007.03.119.
  • Kazakevich, I. L.; Snow, N. H. Adsorption Behavior of Hexafluorophosphate on Selected Bonded Phases. J. Chromatogr. A. 2006, 1119, 43–50. DOI: 10.1016/j.chroma.2006.02.094.
  • Goss, J. D. Improved Liquid Chromatography of Salicylic Acid and Some Related Compounds on a Phenyl Column. J. Chromatogr. A. 1998, 828, 267–271. DOI: 10.1016/S0021-9673(98)00655-4.
  • https://www.waters.com/waters/promotionDetail.htm?id=10048475&alias=Alias_selectivitychart__CHEMISTRY&locale=en_US