363
Views
2
CrossRef citations to date
0
Altmetric
Articles

Quantitative structure retention relationship (QSRR) approach for assessment of chromatographic behavior of antiviral drugs in the development of liquid chromatographic method

ORCID Icon, ORCID Icon, , &

References

  • ICH Harmonized Guideline Q12. Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle Management, 2017.
  • Food Drug Administration. Pharmaceutical Quality System (ICH 10) conference. Arlington, VA, 2011.
  • Schweitzer, M.; Pohl, M.; Hanna-Brown, M.; Nethercote, P.; Borman, P.; Hansen, G.; Smith, K.; Larew, J. Implications and Opportunities of Applying QbD Principles to Analytical Measurements. Pharm. Tech. 2010, 34, 52–59.
  • Peraman, R.; Bhadraya, K.; Padmanabha Reddy, Y. Analytical Quality by Design: A Tool for Regulatory Flexibility and Robust Analytics. Int. J Anal. Chem. 2015, 2015, 1–9. DOI: 10.1155/2015/868727.
  • Agatonovic Kustrin, S.; Zecevic, M.; Zivanovic, L.; Tucker, I. G. Application of Artificial Neural Networks in HPLC Method Development. J. Pharm. Biomed. Anal. 1998, 17, 69–76. DOI: 10.1016/s0731-7085(97)00170-2.
  • Webb, R.; Doble, P.; Dawson, M. Optimisation of HPLC Gradient Separations Using Artificial Neural Networks (ANNs): Application to Benzodiazepines in Post-Mortem Samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 77, 615–620. DOI: 10.1016/j.jchromb.2009.01.012.
  • Chatterjee, S. QbD Considerations for Analytical Methods—FDA Perspective. IFPAC Annual Meeting, CMC Lead for QbD ONDQA/CDER/FDA, Baltimore, MD, 2013.
  • Burnett, K. L.; Harrington, B.; Graul, T. W. QbD in Liquid Chromatographic Applications; Fanalis, S., Haddad, P. A., Poole, C. F., Eds.; Elsevier, 2013. Amsterdam, Netherlands.
  • Kaliszan, R. Chapter 11, Recent Advances in Quantitative Structure-Retention Relationships (QSRR). In Handbook of Analytical Separations, 2000. Amsterdam, Netherlands: Elsevier. DOI: 10.1016/S1567-7192(00)80014-5.
  • Karoly, H. Quantitative Structure (Chromatographic) Retention Relationships. J. Chromatogr. A 2007, 1158, 273–305. DOI: 10.1016/j.chroma.2007.03.108.
  • Ruth, I. J.; Amos, P. R.; Haddad, S.,R.; John, W. D.; Christopher, A. P. Molecular Modeling and Prediction Accuracy in Quantitative Structure-Retention Relationship Calculations for Chromatography. Trends. Anal. Chem. 2018, 105, 352–359. DOI: 10.1016/j.trac.2018.05.019.
  • Cristina, I. D. M.; David, A. S.; Stephen, W. D.; Melvin, R. E.; Nicholas Shaw, P.; David, A. B. Chromatographic Retention Behaviour of n-Alkylbenzenes and Pentylbenzene Structural Isomers on Porous Graphitic Carbon and Octadecyl-Bonded Silica Studied Using Molecular Modelling and QSRR. J. Chromatogr. A 2010, 1217, 6987–6993. DOI: 10.1016/j.chroma.2010.08.023.
  • Nasser, J. J.; Zeraatkar, E. Fuzzy Wavelet Network Based on Extended Kalman Filter Training Algorithm Combined with Least Square Weight Estimation: Efficient and Improved Chromatographic QSRR/QSPR Models. Chemometr. Intell. Lab. Syst. 2021, 208, 104191. DOI: 10.1016/j.chemolab.2020.104191.
  • Yabin, W.; Talebi, M.; Ruth, I. J.; Amos, R. S.; John, W. D.; Christopher, A. P.; Paul, R. H. Retention Prediction in Reversed Phase High Performance Liquid Chromatography Using Quantitative Structure-Retention Relationships Applied to the Hydrophobic Subtraction Model. J. Chromatogr. A 2018, 1541, 1–11. DOI: 10.1016/j.chroma.2018.01.053.
  • Amir, M. R.; Yousefinejad, S.; Azin, S.; Afshan, M.; Ghodratollah, A. Quantitative Structure-Retention Relationship for Chromatographic Behaviour of Anthraquinone Derivatives through considering Organic Modifier Features in Micellar Liquid Chromatography. J. Chromatogr. A 2019, 1599, 46–54. DOI: 10.1016/j.chroma.2019.03.063.
  • Ciura, K.; Dziomba, S.; Nowakowska, J.; Markuszewski, M. J. Thin Layer Chromatography in Drug Discovery Process. J. Chromatogr. A 2017, 1520, 9–22. DOI: 10.1016/j.chroma.2017.09.015.
  • Klara, I. V. Chapter 13: Application of HPLC Measurements for the Determination of Physicochemical and Biomimetic Properties to Model In Vivo Drug Distribution in Support of Early Drug Discovery. Handbook of Analytical Separations, Elsevier Publishing: Amsterdam, 2020; Vol. 8, p 667. DOI: 10.1016/B978-0-444-64070-3.00013-8.
  • Ciura, K.; Kawczak, P.; Greber, K. E.; Kapica, H.; Nowakowska, J.; Bączek, T. Application of Reversed-Phase Thin Layer Chromatography and QSRR Modelling for Prediction of Protein Binding of Selected β-Blockers. J. Pharm. Biomed. Anal. 2019, 176, 112767. DOI: 10.1016/j.jpba.2019.07.015.
  • Naylor, B. C.; Catrow, J. L.; Maschek, J. A.; Cox, J. E. QSRR Automator: A Tool for Automating Retention Time Prediction in Lipidomics and Metabolomics. Metabolites 2020, 10, 237–245. DOI: 10.3390/metabo10060237.
  • Szultka Mlynska, M.; Boguslaw, B. Chromatographic Behavior of Selected Antibiotic Drugs Supported by Quantitative Structure-Retention Relationships. J. Chromatogr. A 2016, 1478, 50–59. DOI: 10.1016/j.chroma.2016.11.057.
  • Ghavami, R.; Rasouli, Z. Investigation of Retention Behavior of Anthraquinoids in rp-HPLC on 17 Different C18 Stationary Phases by Means of Quantitative Structure Retention Relationships. Med. Chem. Res. 2012, 22, 2677–2691. DOI: 10.1007/s00044-012-0254-0.
  • Walczak-Skierska, J.; Szultka-Młyńska, M.; Pauter, K.; Buszewski, B. Study of Chromatographic Behavior of Antibiotic Drugs and Their Metabolites Based on Quantitative structure-retention relationships with the use of HPLC-DAD. J. Pharm. Biomed. Anal. 2020, 184, 113187. DOI: 10.1016/j.jpba.2020.113187.
  • Zisi, C.; Sampsonidis, I.; Fasoula, S.; Papachristos, K.; Witting, M.; Gika, H. G.; Nikitas, P.; Pappa-Louisi, A. QSRR Modeling for Metabolite Standards Analyzed by Two Different Chromatographic Columns Using Multiple Linear Regression. Metabolites 2017, 7, 7. DOI: 10.3390/metabo7010007.
  • Wu, Q.; Gu, H.-W.; Yin, X.-L.; Zhou, H.-H.; Chang, H.-Y.; Shi, J.; Chen, Y.; Yan, X.-F.; Liu, Z. Development of an HPLC-DAD Method Combined with Chemometrics for Differentiating Geographical Origins of Chinese Red Wines on the Basis of Phenolic Compounds. Food Anal. Methods 2021, 14, 1895–1907. DOI: 10.1007/s12161-021-02032-1.
  • Jelena, G.; Ana, P.; Mira, Z.; Biljana, O.; Marija, M.; Ljiljana, Z. Quantitative Structure–Retention Relationships of Azole Antifungal Agents in Reversed-Phase High Performance Liquid Chromatography. Talanta 2012, 100, 329–337. DOI: 10.1016/j.talanta.2012.07.071.
  • International Conference on Harmonization (ICH) Tripartite, Guidelines, ICH Q2: Validation of Analytical Procedures (R1), Toronto, 2005.
  • Giriraj, P.; Sivakkumar, T. A Rapid-Chemometrics Assisted RP-HPLC Method with PDA Detection for the Simultaneous Estimation of Ofloxacin and Nimorazole in Pharmaceutical Formulation. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 904–910. DOI: 10.1080/10826076.2014.991870.
  • Yangfei, W.; Qiong, A.; Jianyin, L.; Hai, S.; Xiangdong, J.; Yongjian, Y.; Guoren, Y. Fingerprint and Multicomponent Quantitative Analysis for the Quality Evaluation of Sibiraea angustata Leaves by HPLC-DAD and HPLC-ESI-MS/MS Combined with Chemometrics. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 449–458. DOI: 10.1080/10826076.2017.1320290.
  • Usman, A. G.; IŞik, S.; Abba, S. I.; MerİÇlİ, F. Artificial Intelligence-Based Models for the Qualitative and Quantitative Prediction of a Phytochemical Compound using HPLC Method. Turk. J. Chem. 2020, 44, 1339–1351. DOI: 10.3906/kim-2003-6.
  • Schefzick, S.; Kibbey, C.; Bradley, M. P. Prediction of HPLC Conditions Using QSPR Techniques: An Effective Tool to Improve Combinatorial Library Design. J. Comb. Chem. 2004, 6, 916–927. DOI: 10.1021/cc049914y.
  • Usman, A. G.; Işik, S.; Abba, S. I. Hybrid Data-Intelligence Algorithms for the Simulation of Thymoquinone in HPLC Method Development. J. Iran. Chem. Soc. 2021, 18, 1537–1549. DOI: 10.1007/s13738-020-02124-5.
  • Ranušová, P.; Nemeček, P.; Lehotay, J.; Čižmárik, J. QSRR Modelling Aimed on the HPLC Retention Prediction of Dimethylamino- and Pyrrolidino-Substitued Esters of Alkoxyphenylcarbamic Acid. Chem. Pap. 2021, 75, 2525–2535. DOI: 10.1007/s11696-020-01470-1.
  • Florin, S.; Mihaela, S.; Victor, D. Dependence of Reversed-Phase Liquid Chromatographic Retention for Aripiprazole and Some Related Chemical Impurities on the Main Elution Parameters. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 70–76.
  • Toma, G.; Andrei, M.; Victor, D. Hydrophobicity Parameter (Log Kow) Estimation for Some Phenolic Compounds of Pharmaceutical Interest from Retention Studies with Mobile Phase Composition in Reversed‐Phase Liquid Chromatography. Sep. Sci. Technol. 2008, 43, 147–163.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.