386
Views
1
CrossRef citations to date
0
Altmetric
Articles

Development of a rapid LC-MS/MS method for the simultaneous quantification of various flavonoids, isoflavonoids, and phytohormones extracted from Medicago truncatula leaves

, , , , , & show all

References

  • Androutsopoulos, V. P.; Papakyriakou, A.; Vourloumis, D.; Tsatsakis, A. M.; Spandidos, D. A. Dietary Flavonoids in Cancer Therapy and Prevention: Substrates and Inhibitors of Cytochrome P450 CYP1 Enzymes. Pharmacol. Ther. 2010, 126, 9–20. DOI: 10.1016/j.pharmthera.2010.01.009.
  • Ma, G.-Z.; Wang, C.-M.; Li, L.; Ding, N.; Gao, X.-L. Effect of Pomegranate Peel Polyphenols on Human Prostate Cancer PC-3 Cells In Vivo. Food Sci. Biotechnol. 2015, 24, 1887–1892. DOI: 10.1007/s10068-015-0247-0.
  • Siahpoosh, A.; Asili, J.; Sarhangi, B. Antioxidative and Free Radical Scavenging Activities of Some Extracts from Ripe Fruits of Phoenix Dactylifera L. Int. J. Pharmacogn. Phytochem. 2016, 8, 1735–1741.
  • Balci, F.; Ozdemir, F. Influence of Shooting Period and Extraction Conditions on Bioactive Compounds in Turkish Green Tea. Food Sci. Technol. 2016, 36, 737–743. DOI: 10.1590/1678-457x.17016.
  • Rahimi, R.; Ghiasi, S.; Azimi, H.; Fakhari, S.; Abdollahi, M. A Review of the Herbal Phosphodiesterase Inhibitors; Future Perspective of New Drugs. Cytokine 2010, 49, 123–129. DOI: 10.1016/j.cyto.2009.11.005.
  • Park, J.; Kim, S.-H.; Kim, T.-S. Inhibition of Interleukin-4 Production in Activated T Cells via Down-Regulation of NF-at DNA Binding Activity by Apigenin, a Flavonoid Present in Dietary Plants. Immunol. Lett. 2006, 103, 108–114. DOI: 10.1016/j.imlet.2005.10.002.
  • Ertas, A.; Yilmaz, M.-A.; Boga, M.; Hasimi, N.; Yesil, Y.; Goren, A.-C.; Temel, H.; Topcu, G. Chemical Profile and Biological Activities of Two Edible Plants: Chemical Investigation and Quantitative Analysis Using Liquid Chromatography Tandem Mass Spectrometry and Gas Chromatography Mass Spectrometry. Int. J. Food Prop. 2016, 19, 124–138. DOI: 10.1080/10942912.2015.1020437.
  • Dixon, R. A.; Sumner, L. W. Legume Natural Products: Understanding and Manipulating Complex Pathways for Human and Animal Health. Plant Physiol. 2003, 131, 878–885. DOI: 10.1104/pp.102.017319.
  • Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. Engl. 2011, 50, 586–621. DOI: 10.1002/anie.201000044.
  • Hollman, P. C.; H.; Katan, M.-B. Dietary Flavonoids: Intake, Health Effects and Bioavailability. Food Chem. Toxicol. 1999, 37, 937–942. DOI: 10.1016/S0278-6915(99)00079-4.
  • Wootton-Beard, P. C.; Ryan, L. Improving Public Health: The Role of Antioxidant-Rich Fruit and Vegetable Beverages. Food Res. Int. 2011, 44, 3135–3148. DOI: 10.1016/j.foodres.2011.09.015.
  • Hwang, S.-L.; Shih, P.-H.; Yen, G.-C. Neuroprotective Effects of Citrus Flavonoids. J. Agric. Food Chem. 2012, 60, 877–885. DOI: 10.1021/jf204452y.
  • Dwyer, J.-T.; Peterson, J. Tea and Flavonoids: Where we Are, Where to Go Next. Am. J. Clin. Nutr. 2013, 98, 1611S–1618S. DOI: 10.3945/ajcn.113.059584.
  • Du, H.; Huang, Y.; Tang, Y. Genetic and Metabolic Engineering of Isoflavonoid Biosynthesis. Appl. Microbiol. Biotechnol. 2010, 86, 1293–1312. DOI: 10.1007/s00253-010-2512-8.
  • Sohn, S. I.; Pandian, S.; Oh, Y. J.; Kang, H. J.; Cho, W. S.; Cho, Y. S. Metabolic Engineering of Isoflavones: An Updated Overview. Front. Plant Sci. 2021, 12, 670103. DOI: 10.3389/fpls.2021.670103.
  • Koo, Y. M.; Heo, A. Y.; Choi, H. W. Salicylic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathol. J. 2020, 36, 1–10. DOI: 10.5423/PPJ.RW.12.2019.0295.
  • Gupta, A.; Bhardwaj, M.; Tran, L. P. Jasmonic Acid at the Crossroads of Plant Immunity and Pseudomonas syringae Virulence. IJMS. 2020, 21, 7482. DOI: 10.3390/ijms21207482.
  • Erb, M.; Kliebenstein, D. J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020, 184, 39–52. DOI: 10.1104/pp.20.00433.
  • Ignat, I.; Volf, I.; Popa, V.-I. A Critical Review of Methods for Characterisation of Polyphenolic Compounds in Fruits and Vegetables. Food Chem. 2011, 126, 1821–1835. DOI: 10.1016/j.foodchem.2010.12.026.
  • Areias, F.-M.; Valentão, P.; Andrade, P.-B.; Moreira, M.-M.; Amaral, J.; Seabra, R.-M. HPLC/DAD Analysis of Phenolic Compounds from Lavender and Its Application to Quality Control. J. Liq. Chromatogr. R. T. 2000, 23, 2563–2572. DOI: 10.1081/JLC-100100510.
  • Marczak, L.; Stobiecki, M.; Jasiński, M.; Oleszek, W.; Kachlicki, P. Fragmentation Pathways of Acylated Flavonoid Diglucuronides from Leaves of Medicago truncatula. Phytochem. Anal. 2010, 21, 224–233. DOI: 10.1002/pca.1189.
  • Kreft, S.; Knapp, M.; Kreft, I. Extraction of Rutin from Buckwheat (Fagopyrum esculentum Moench) Seeds and Determination by Capillary Electrophoresis. J. Agric. Food Chem. 1999, 47, 4649–4652. DOI: 10.1021/jf990186p.
  • Chen, X. J.; Zhao, J.; Meng, Q.; Li, S. P.; Wang, Y. T. Simultaneous Determination of Five Flavonoids in Licorice Using Pressurized Liquid Extraction and Capillary Electrochromatography Coupled with Peak Suppression Diode Array Detection. J. Chromatogr. A 2009, 1216, 7329–7335. DOI: 10.1016/j.chroma.2009.08.034.
  • Bajkacz, S.; Baranowska, I.; Buszewski, B.; Kowalski, B.; Ligor, M. Determination of Flavonoids and Phenolic Acids in Plant Materials Using SLE-SPE-UHPLC-MS/MS Method. Food Anal. Methods 2018, 11, 3563–3575. DOI: 10.1007/s12161-018-1332-9.
  • Jiang, Z.; Wang, X.; Wang, J.; Liu, C.; Pan, J. Simultaneous Determination of Eight Flavonoids in Sedum Sarmentosum Bunge from Different Areas by UHPLC with Triple Quadrupole MS/MS. Biomed. Chromatogr. 2019, 33, 4601. DOI: 10.1002/bmc.4601.
  • Bouhafsoun, A.; Yilmaz, M. A.; Boukeloua, A.; Temel, H.; Harche, M. K. Simultaneous Quantification of Phenolic Acids and Flavonoids in Chamaerops Humilis L Using LC–ESI-MS/MS. Food Sci. Technol. 2018, 38, 242–247. DOI: 10.1590/fst.19917.
  • Guoa, Y.; Liu, H.; Ding, L.; Oppong, M.; Pan, G.; Qiu, F. LC-MS/MS Method for Simultaneous Determination of Flavonoids and Physalins in Rat Plasma: Application to Pharmacokinetic Study after Oral Administration of Physalis alkekengi Var. franchetii (Chinese Lantern) Extract. Biomed. Chromatogr. 2017, 31, e3970. DOI: 10.1002/bmc.3970.
  • Jaegle, B.; Uroic, M.-K.; Holtkotte, X.; Lucas, C.; Termath, A.-O.; Schmalz, H.-G.; Bucher, M.; Hoecker, U.; Hülskamp, M.; Schrader, A. A Fast and Simple LC-MS-Based Characterization of the Flavonoid Biosynthesis Pathway for Few Seed(ling)s. BMC Plant Biol. 2016, 16, 190. DOI: 10.1186/s12870-016-0880-7.
  • Zhu, M.-Z.; Wu, W.; Jiao, L.-L.; Yang, P.-F.; Guo, M.-Q. Analysis of Flavonoids in Lotus (Nelumbo Nucifera) Leaves and Their Antioxidant Activity Using Macroporous Resin Chromatography Coupled with LC-MS/MS and Antioxidant Biochemical Assays. Molecules 2015, 20, 10553–10565. DOI: 10.3390/molecules200610553.
  • Carbone, V.; Montoro, P.; Tommasi, N.-D.; Pizza, C. Analysis of Flavonoids from Cyclantherapedata Fruits by Liquid Chromatography/Electrospray Mass Spectrometry. J. Pharmaceut. Biomed. 2004, 34, 295–304. DOI: 10.1016/S0731-7085(03)00580-6.
  • Gómez, J. D.; Vital, C. E.; Oliveira, M. G. A.; Ramos, H. J. O. Broad Range Flavonoid Profiling by LC/MS of Soybean Genotypes Contrasting for Resistance to Anticarsia gemmatalis (Lepidoptera: Noctuidae). PLOS One. 2018, 13, e0205010. DOI: 10.1371/journal.pone.0205010.
  • Coppin, J. P.; Xu, Y.; Chen, H.; Pan, M.-H.; Ho, C.-T.; Juliani, R.; Simon, J. E.; Wu, Q. Determination of Flavonoids by LC/MS and anti-Inflammatory Activity in Moringa Oleifera. J. Funct. Foods 2013, 5, 1892–1899. DOI: 10.1016/j.jff.2013.09.010.
  • Lourdes, M.; Bilbao, M.; Lacueva, C.-A.; Uregui, O.-J.; Lamuela-Ravento, R.-M. Determination of Flavonoids in a Citrus Fruit Extract by LC–DAD and LC–MS. Food Chem. 2007, 101, 1742–1747. DOI: 10.1016/j.foodchem.2006.01.032.
  • Qiao, X.; Yang, W.-Z.; Guo, D.-A.; Ye, M. Extraction, Separation, Detection, and Structural Analysis of Flavonoids. COC. 2011, 15, 2541–2566. DOI: 10.2174/138527211796367327.
  • Ortega, N.; Romero, M.-P.; Macià, A.; Reguant, J.; Anglès, N.; Morelló, J.-R.; Motilva, M.-J. Obtention and Characterization of Phenolic Extracts from Different Cocoa Sources. J. Agric. Food Chem. 2008, 56, 9621–9627. DOI: 10.1021/jf8014415.
  • Ng, J. L.-P.; Hassan, S.; Truong, T.-T.; Hocart, C.-H.; Laffont, C.; Frugier, F.; Mathesius, U. Flavonoids and Auxin Transport Inhibitors Rescue Symbiotic Nodulation in the Medicago truncatula Cytokinin Perception Mutant cre1. Plant Cell. 2015, 27, 2210–2226. DOI: 10.1105/tpc.15.00231.
  • Liu, H.; Li, X.; Xiao, J.; Wang, S. A Convenient Method for Simultaneous Quantification of Multiple Phytohormones and Metabolites: Application in Study of Rice-Bacterium Interaction. Plant Methods. 2012, 8, 2. DOI: 10.1186/1746-4811-8-2.
  • Gampe, N.; Nagy, E.; Kursinszki, L.; Beni, S. Quantitative Determination of Isoflavonoids in Ononis Species by UPLC-UV-DAD. Phytochem. Anal. 2021, 32, 474–481. DOI: 10.1002/pca.2995.
  • Gampe, N.; Szakács, Z.; Darcsi, A.; Boldizsár, I.; Szőke, É.; Kuzovkina, I.; Kursinszki, L.; Béni, S. Qualitative and Quantitative Phytochemical Analysis of Ononis Hairy Root Cultures. Front. Plant Sci. 2020, 11, 622585. DOI: 10.3389/fpls.2020.622585.
  • Gampe, N.; Darcsi, A.; Nedves, A. N.; Boldizsar, I.; Kursinszki, L.; Beni, S. Phytochemical Analysis of Ononis arvensis L. by Liquid Chromatography Coupled with Mass Spectrometry. J. Mass Spectrom. 2019; 54, 121– 133. DOI: 10.1002/jms.4308.
  • Barreira, J. C. M.; Visnevschi-Necrasov, T.; Nunes, E.; Cunha, S. C.; Pereira, G.; Beatriz, M.; Oliveira, P. P. Medicago spp. as Potential Sources of Bioactive Isoflavones: Characterization According to Phylogenetic and Phenologic Factors. Phytochemistry 2015, 116, 230–238. DOI: 10.1016/j.phytochem.2015.04.011.
  • Liu, C.; Ha, C. M.; Dixon, R. A. Functional Genomics in the Study of Metabolic Pathways in Medicago truncatula: An Overview. Methods Mol. Biol. 2018, 1822, 315-337. DOI: 10.1007/978-1-4939-8633-0_20.
  • Xie, D.-Y.; Sharma, S. B.; Wright, E.; Wang, Z.-Y.; Dixon, R. A. Metabolic Engineering of Proanthocyanidins through Co-expression of Anthocyanidin Reductase and the PAP1 MYB Transcription Factor. Plant J. 2006, 45, 895–907. DOI: 10.1111/j.1365-313X.2006.02655.x.
  • Gou, L.; Zhang, R.; Ma, L.; Zhu, F.; Dong, J.; Wang, T. Multigene Synergism Increases the Isoflavone and Proanthocyanidin Contents of Medicago truncatula. Plant Biotechnol. J. 2016, 14, 915–925. DOI: 10.1111/pbi.12445.
  • Rispail, N.; Prats, E.; Rubiales, D. Medicago truncatula as a Model to Study Powdery Mildew Resistance. In The Model Legume Medicago truncatula; John Wiley & Sons Inc.: Bruijn, 2020.
  • Goel, A.; Kumar, A.; Hemberger, Y.; Raghuvanshi, A.; Jeet, R.; Tiwari, G.; Knauer, M.; Kureel, J.; Singh, A.-K.; Gautam, A.; et al. Synthesis, Optical Resolution, Absolute Configuration, and Osteogenic Activity of Cis-Pterocarpans. Org. Biomol. Chem. 2012, 10, 9583–9592. DOI: 10.1039/C2OB25722J.
  • Liu, Y.; Hassan, S.; Kidd, B. N.; Garg, G.; Mathesius, U.; Singh, K. B.; Anderson, J. P. Ethylene Signaling is Important for Isoflavonoid-Mediated Resistance to Rhizoctonia solani in Roots of Medicago truncatula. Mol. Plant Microbe Interact. 2017, 30, 691–700. DOI: 10.1094/MPMI-03-17-0057-R.
  • Bustamante‐Rangel, M.; Delgado‐Zamarreño, M.-M.; Pérez‐Martín, L.; Rodríguez‐Gonzalo, E.; Domínguez‐Álvarez, J. Analysis of Isoflavones in Foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 391–411. DOI: 10.1111/1541-4337.12325.
  • Farag, M.-A.; Huhman, D.-V.; Lei, Z.; Sumner, L.-W. Metabolic Profiling and Systematic Identification of Flavonoids and Isoflavonoids in Roots and Cell Suspension Cultures of Medicago truncatula Using HPLC-UV-ESI-MS and GC-MS. Phytochemistry 2007, 68, 342–354. DOI: 10.1016/j.phytochem.2006.10.023.
  • Gill, U.-S.; Uppalapati, S.-R.; Gallego, L.; Giraldo, Y.; Ishiga, R.-A.; Mysore, K.-S. Metabolic Flux towards the (Iso)flavonoid Pathway in Lignin Modified Alfalfa Lines Induces Resistance against Fusarium oxysporum f. sp. medicaginis. Plant Cell Environ. 2018, 41, 1997–2007. DOI: 10.1111/pce.13093.
  • Allasia, V.; Industri, B.; Ponchet, M.; Quentin, M.; Favery, B.; Keller, H. Quantification of Salicylic Acid (SA) and SA-Glucosides in Arabidopsis thaliana. Bio-Protocol LCC 2018, 8, 1–8. DOI: 10.21769/BioProtoc.2844.
  • ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2 (R1). In Proceedings of the International Conference on Harmonization, London, UK, Nov 6, 2005.
  • Zhao, X.; Zhang, S.; Liu, D.; Yang, M.; Wei, J. Analysis of Flavonoids in Dalbergia Odorifera by Ultra-Performance Liquid Chromatography with Tandem Mass Spectrometry. Molecules 2020, 25, 389. DOI: 10.3390/molecules25020389.
  • Zgorka, G. Ultrasound-Assisted Solid-Phase Extraction Coupled with Photodiode-Array and Fluorescence Detection for Chemotaxonomy of Isoflavone Phytoestrogens in Trifolium L. (Clover) Species. J. Sep. Sci. 2009, 32, 965–972. DOI: 10.1002/jssc.200800456.
  • Blahova, L.; Kohoutek, J.; Prochazkova, T.; Prudikova, M.; Blaha, L. Phytoestrogens in Milk: Overestimations Caused by Contamination of the Hydrolytic Enzyme Used during Sample Extraction. J. Dairy Sci. 2016, 99, 6973–6982. DOI: 10.3168/jds.2016-10926.
  • Lopez-Gutierrez, N.; Romero-Gonzalez, R.; Frenich, A. G.; Vidal, J. L. M. Identification and Quantification of the Main Isoflavones and Otherphytochemicals in Soy Based Nutraceutical Products by Liquidchromatography–Orbitrap High Resolution Mass Spectrometry. J. Chromatogr. A 2014, 1348, 125–136. DOI: 10.1016/j.chroma.2014.04.090.
  • Nakata, R.; Yoshinaga, N.; Teraishi, M.; Okumoto, Y.; Huffaker, A.; Schmelz, E.-A.; Mori, N. A Fragmentation Study of Isoflavones by IT-TOF-MS using Biosynthesized Isotopes. Biosci. Biotechnol. Biochem. 2018, 82, 1309–1315. DOI: 10.1080/09168451.2018.1465810.
  • Paul, J.; Madeira, A.; Borges, C.-M.; Florêncio, M.-H. Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometric and Semi-Empirical Calculations Study of Five Isoflavone Aglycones. Rapid Commun. Mass Spectrom. 2010, 24, 3432–3440. DOI: 10.1002/rcm.4791.
  • Han, Y. J.; B. Kang, E.; Yang, J.; Choi, M.; Song, I. Simultaneous Determination and Pharmacokinetic Characterization of Glycyrrhizin, Isoliquiritigenin, Liquiritigenin, and Liquiritin in Rat Plasma following Oral Administration of Glycyrrhizae Radix Extract. Molecules 2019, 24, 1816. DOI: 10.3390/molecules24091816.
  • Andres, S.; Hansen, U.; Niemann, B.; Palavinskas, R.; Lampen, A. Determination of the Isoflavone Composition and Estrogenic Activity of Commercial Dietary Supplements Based on Soy or Red Clover. Food Funct. 2015, 6, 2017–2025. DOI: 10.1039/c5fo00308c.
  • Hussein, A.; Eyles, S. J.; Lyle, C. Evaluation of Extraction Methods for Isolation and Detection of Formononetin in Black Cohosh (Actaea racemosa L.). J. Med. Act. Plants 2012, 1, 6–12. DOI: 10.7275/R5CR5R84.
  • Zeng, X.; Su, W.; Zheng, Y.; Liu, H.; Li, P.; Zhang, W.; Liang, Y.; Bai, Y.; Peng, W.; Yao, H. UFLC-Q-TOF-MS/MS-Based Screening and Identification of Flavonoids and Derived Metabolites in Human Urine after Oral Administration of Exocarpium Citri grandis Extract. Molecules 2018, 23, 895. DOI: 10.3390/molecules23040895.
  • Tsimogiannis, D.; Samiotaki, M.; Panayotou, G.; Oreopoulou, V. Characterization of Flavonoid Subgroups and Hydroxy Substitution by HPLC-MS/MS. Molecules 2007, 12, 593–606. DOI: 10.3390/12030593.
  • Protasiuk, E.; Olejnik, M. Determination of Salicylic Acid in Feed Using LC-MS/MS. J. Vet. Res. 2018, 62, 303–307. DOI: 10.2478/jvetres-2018-0044.
  • Segarra, G.; Jáuregui, O.; Casanova, E.; Trillas, I. Trillas, I. Simultaneous Quantitative LC-ESI-MS/MS Analyses of Salicylic Acid and Jasmonic Acid in Crude Extracts of Cucumis Sativus under Biotic Stress. Phytochemistry 2006, 67, 395–401. DOI: 10.1016/j.phytochem.2005.11.017.
  • Wang, H.-Y.; Li, T.; Ji, R.; Xu, F.; Liu, G.-X.; Li, Y.-L.; Shang, M.-Y.; Cai, S.-Q. Metabolites of Medicarpin and Their Distributions in Rats. Molecules 2019, 24, 1966. DOI: 10.3390/molecules24101966.
  • Ye, W.-Z.; Yang, K.; Liu, D.; Qiao, X.; Li, B.-J.; Cheng, J.; Feng, J.; Guo, D.-A.; Zhao, Y.-Y. Characterization of Flavonoids in Millettia nitida Var. hirsutissima by HPLC/DAD/ESI-MSn. J. Pharm. Anal. 2012, 2, 35–42. DOI: 10.1016/j.jpha.2011.09.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.