175
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Characterization of the major degradation products of the praziquantel API by mass spectrometry: Development and validation of a stability-indicating reversed phase UPLC method

&

References

  • Dametto, P. R.; Dametto, A. C.; Polese, L.; Ribeiro, C. A.; Chorilli, M.; de Freitas, O. Development and Physicochemical Characterization of Solid Dispersions Containing Praziquantel for the Treatment of Schistosomiasis. J. Therm. Anal. Calorim. 2017, 127, 1693–1706. DOI: 10.1007/s10973-016-5759-1.
  • Hanpitakpong, W.; Banmairuroi, V.; Kamanikom, B.; Choemung, A.; Na-Bangchang, K. A High-Performance Liquid Chromatographic Method for Determination of Praziquantel in Plasma. J. Pharm. Biomed. Anal. 2004, 36, 871–876. DOI: 10.1016/j.jpba.2004.07.043.
  • El-Subbagh, H. I.; Al-Badr, A. A. Analytical Profile of Praziquantel. In Analytical Profiles of Drug Substances and Excipients; Brittain, H. H., Ed.; Academic Press: New York, NY, 1998; Vol. 25, pp 463–500.
  • Bakshi, M.; Singh, S. Development of Validated Stability-Indicating Assay Methods—Critical Review. J. Pharm. Biomed. Anal. 2002, 28, 1011–1040. DOI: 10.1016/s0731-7085(02)00047-x.
  • International Conference on Harmonization (ICH), Guidelines, ICH Q2: Validation of Analytical Procedures (R1), Toronto, 2005.
  • International Conference on Harmonization (ICH), Guidelines, ICH Q1A(R2): Stability testing of new drug substances and products, IFPMA, Geneva, Switzerland, 2003.
  • International Conference on Harmonization (ICH), Guidelines, ICH Q1B: Stability Testing: Photostability Testing of New Drug Substances and Products, IFPMA, Geneva, Switzerland, 1996.
  • International Conference on Harmonization (ICH), Guidelines, ICH Q14 (Draft version): Analytical Procedure Development, IFMPA, Geneva, 2022.
  • International Conference on Harmonization (ICH), Guidelines, Q3B (R2 Impurities in New Drug Substances Products, IFPMA, Geneva, Switzerland, 2006.
  • Mahajan, A. A.; Miniyar, P. B.; Patil, A. S.; Waghmare, R. U.; Patil, J. J.; Mohanraj, K.; Tiwari, R. N. Separation, Identification and Characterization of Degradation Products of Erlotinib Hydrochloride under ICH Recommended Stress Conditions by LC, LC-MS/TOF. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 629–639. DOI: 10.1080/10826076.2014.936610.
  • Jain, S.; Giri, S.; Sharma, N.; Shah, R. P. LC and LC-HRMS Studies on Stability Behavior of Molnupiravir an Anti-COVID 19 Drug. J. Liq. Chromatogr. Relat. Technol. 2022, 44 (15-16), 750–759. DOI: 10.1080/10826076.2022.2063331.
  • Tiwari, R. N.; Bonde, C. G.; Bothara, K. G. Identification and Characterization of Degradation Products of Raltegravir Using LC, LC-MS/TOF, and MSn. J. Liq. Chromatogr. Relat. Technol. 2013, 36, 1078–1095. DOI: 10.1080/10826076.2012.685909.
  • Talluri, M. V. N. K.; Keshari, K. K.; Kalariya, P. D.; Srinivas, R. Selective Separation and Characterization of the Stress Degradation Products of Ondansetron Hydrochloride by Liquid Chromatography with Quadrupole Time-of-Flight Mass Spectrometry. J. Sep. Sci. 2015, 38, 1625–1632. DOI: 10.1002/jssc.201401305.
  • Yerra, N. V.; Pallerla, P.; Pandeti, S.; Tabet, J. C.; Thota, J. R. Characterization of Degradation Products of Macitentan under Various Stress Conditions Using Liquid Chromatography/Mass Spectrometry. Rapid Commun. Mass Spectrom. 2018, 32, 1075–1084. DOI: 10.1002/rcm.8138.
  • Chander, C. P.; Raju, B.; Ramesh, M.; Shankar, G.; Srinivas, R. LC‐ESI‐MS/MS Study of Repaglinide and Its Forced Degradation Products. Rapid Commun. Mass Spectrom. 2018, 32, 1181–1190. DOI: 10.1002/rcm.8151.
  • Yerra, N. V.; Dadinaboyina, S. B.; Abbaraju, L. V.; Talluri, M. V. N. K.; Thota, J. R. Identification and Characterization of Degradation Products of Indacaterol Using LC/MS. Eur. J. Mass Spectrom. 2020, 26, 425–431. DOI: 10.1177/1469066720971550.
  • Reddy, G. M. K.; Singamsetti, J. M.; Kaliyaperumal, M.; Doddipalla, R.; Ivaturi, R.; Rumalla, C. S.; Korupolu, R. B.; Babu, B. K. Degradation Studies of Levosimendan Isolation, Identification, and Structure Confirmation of Stress Degradation Products Using LCMS, Mass Mediated Prep-HPLC, NMR, HRMS, SFC and FTIR. J. Liq. Chromatogr. Relat. Technol. 2019, 43, 1–12. DOI: 10.1080/10826076.2019.1613429.
  • Tolic, K.; Runje, M.; Kraljevic, T. G.; Pavlovic, M. D. Identification of Crizotinib Major Degradation Products Obtained under Stress Conditions by RP-UHPLC-HRMS. Croat. Chem. Acta 2021, 94, 17–24. DOI: 10.5562/cca3756.
  • Basniwal, P. K.; Jain, D. Intrinsic Stability Study and Forced Degradation Profiling of Olopatadine Hydrochloride by RPHPLC-DAD-HRMS Method. Turk. J. Pharm. Sci. 2019, 16, 392–400. DOI: 10.4274/tjps.galenos.2018.83007.
  • Thummar, M.; Patel, P. N.; Petkar, A. L.; Swain, D.; Srinivas, R.; Gananadhamu, S. Identification of Degradation Products of Saquinavir Mesylate by UHPLC-ESI-Q-TOF -MS/MS and Its Application to Quality Control. Rapid Commun. Mass Spectrom. 2017, 31, 771–781. DOI: 10.1002/rcm.7842.
  • Babu, A. R.; Borkar, R. M.; Raju, G.; Raju, B.; Srinivas, R. Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry Study of Nilutamide and Its Stress Degradation Products: In Silico Toxicity Prediction of Degradation Products. Biomed. Chromatogr. 2014, 28, 788–793. DOI: 10.1002/bmc.3119.
  • Pandeti, S.; Rout, T. K.; Narender, T.; Reddy, T. J. Identification of Stress Degradation Products of Iloperidone Using Liquid Chromatography Coupled with Orbitrap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2017, 31, 1324–1332. DOI: 10.1002/rcm.7907.
  • Saida, S. J.; Manikandan, A.; Kaliyaperumal, M.; Rumalla, C. S.; Khan, A. A.; Jayaraman, V. B.; Yanaka, R.; Rao, S. V. Identification, Isolation and Characterization of Dolutegravir Forced Degradation Products and Their Cytotoxicity Potential. J. Pharm. Biomed. Anal. 2019, 174, 588–594. DOI: 10.1016/j.jpba.2019.06.022.
  • Niguram, P.; Kate, A. S. Structural Characterization of Forced Degradation Products of Empagliflozin by High Resolution Mass Spectrometry. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 417–428. DOI: 10.1080/10826076.2019.1625368.
  • Hashem, H.; Ibrahim, A. E.; Elhenawee, M. A Rapid Stability Indicating LC-Method for Determination of Praziquantel in Presence of Its Pharmacopoeial Impurities. Arabian J. Chem. 2017, 10, S35–S41. DOI: 10.1016/j.arabjc.2012.07.005.
  • Devaka, N. V. S. K.; Rao, V. M. Chromatographic Quantification of Ivermectin and Pranziquantel in the Tablets Using Stability Indicating RP-HPLC Method. Pharm. Sci. 2019, 25, 254–261. DOI: 10.15171/PS.2019.41.
  • Havlikova, L.; Brabcova, I.; Satınsky, D.; Matysova, L.; Luskacova, A.; Osicka, Z.; Solich, P. Optimisation of an HPLC Method for the Simultaneous Determination of Pyrantel Pamoate, Praziquantel, Fenbendazole, Oxfendazole and Butylhydroxyanisole Using a Phenyl Stationary Phase. Anal. Methods 2012, 4, 1592–1597. DOI: 10.1039/c2ay05847b.
  • Shah, S. R.; Dey, S.; Pradhan, P.; Jain, H. K.; Upadhyay, U. M. Method Development and Validation for Simulataneous Estimation of Albendazole and Praziquantel in Bulk and in a Synthetic Mixture. J. Taibah Univ. Sci. 2014, 8, 54–63. DOI: 10.1016/j.jtusci.2013.08.004.
  • Sajjanwar, R.; Bhaskaran, S.; Kakati, K.; Jha, S. K. Simultaneous Estimation of Pyrantel Pamoate, Praziquantel & Febantel by High Performance Liquid Chromatography Using Dual Wavelength. J. App. Pharm. Res. 2014, XI, 32–43.
  • Tatar, E.; Gökhan, A. T. E. Ş.; İlkay, K. Development and Validation of a RP-HPLC Method for Quality Control of Oxantel Pamoate, Pyrantel Pamoat and Praziquantel in Tablets. MPJ 2015, 1, 27–27. DOI: 10.12991/mpj.2015198607.
  • Phatak, H. M.; Vaidya, V. V.; Phatak, M. S.; Rajeghadge, D. A Rapid High Performance Liquid Chromatography Method for Simultaneous Quantification of Praziquantel, Ivermectin and Abamectin from Veterinary Formulations: development, Validation and Application. Int. J. Pharm. Res. Scholars 2016, 5, 57–65.
  • Dighe, N. S.; Thorat, S. K.; Shinde, G. S.; Dhamak, K. V. Simultaneous Estimation & Validation of Praziquantel & Pyrantel Pamoate in Bulk & Pharmaceutical Dosage Form by Using RP-HPLC. J. Drug Deliv. Ther. 2019, 9, 264–268. DOI: 10.22270/jddt.v9i3-s.2951.
  • Toranmal, S. S.; Buchade, R. S.; Tandale, S. D.; Wagh, V. H.; Chaure, P. P. Development and Validation of Stability Indicating HPLC Method for Simultaneous Estimation of Milbemycin Oxime and Praziquantel from Bulk and Marketed Formulation. J. Pharm. Sci. Res. 2019, 11, 3108–3115.
  • Rajesh, R.; James, J. J. A Validated RP-HPLC Method for Simultaneous Estimation of Pyrantel Pamoate and Praziquantel in Bulk and Pharmaceutical Dosage Form. Int. J. Pharm. Pharm. Sci. 2019, 11, 62–67. DOI: 10.22159/ijpps.2019v11i5.30488.
  • Dey, S.; Shah, S.; Ghosh, M.; Karki, N.; Basak, S.; Sahoo, N. G. A Novel, Quick Column Switching RP-HPLC Guided Metabolite Profiling of Albendazole-Praziquantel in Rat Plasma: Designing New Combination Dosage Regimen with Higher Therapeutic Window. CAC 2018, 14, 604–614. DOI: 10.2174/1573411014666171206152945.
  • Hormazabal, V.; Yndestad, M. HPLC Determination of Praziquantel in Plasma and Tissues of Cultured Fish for Residue and Pharmacokinetic Studies. J. Liq. Chromatogr. Relat. Technol. 1995, 18, 589–597. DOI: 10.1080/10826079508009259.
  • Zeng, B.; Nguyen, K.; Sherma, J. Development of Quantitative HPTLC-Densitometry Methods following a Model Approach for Transfer of TLC Screening Methods for Pharmaceutical Products of Atenolol, Chloramphenicol, Furosemide, Glibenclamide, Penicillin V Potassium, and Praziquantel. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 324–328. DOI: 10.1080/10826076.2018.1448689.
  • Liu, J.; Stewart, J. T. HPLC Determination of Praziquantel Enantiomers in Human Serum Using a Reversed-Phase Cellulose-Based Chiral Stationary Phase and Disc Solid-Phase Extraction. J. Chromatogr. B Biomed. Sci. Appl. 1997, 692, 141–147. DOI: 10.1016/S0378-4347(96)00461-6.
  • Meister, I.; Leonidova, A.; Kovač, J.; Duthaler, U.; Keiser, J.; Huwyler, J. Development and Validation of an Enantioselective LC–MS/MS Method for the Analysis of the Anthelmintic Drug Praziquantel and Its Main Metabolite in Human Plasma, Blood and Dried Blood Spots. J. Pharm. Biomed. Anal. 2016, 118, 81–88. DOI: 10.1016/j.jpba.2015.10.011.
  • Lima, R. M.; Ferreira, M. A. D.; Ponte, T. M. J.; Marques, M. P.; Takayanagui, O. M.; Garcia, H. H.; Coelho, E. B.; Bonato, P. S.; Lanchote, V. L. Enantioselective Analysis of Praziquantel and Trans-4-Hydroxypraziquantel in Human Plasma by Chiral LC–MS/MS: Application to Pharmacokinetics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 3083–3088. DOI: 10.1016/j.jchromb.2009.07.036.
  • He, L.; Gao, F.; Li, E.; Lee, J. T.; Bian, L.; Armstrong, D. W. Chromatographic Separation of Racemic Praziquantel and Its Residual Determination in Perch by LC-MS/MS. Talanta 2017, 174, 380–386. DOI: 10.1016/j.talanta.2017.05.026.
  • Pontes, F. L. D.; Pontarolo, R.; Campos, F. R.; Gasparetto, J. C.; Cardoso, M. A.; Piantavini, M. S.; Badarã, A. Development and Validation of an HPLC-MS/MS Method for Simultaneous Determination of Ivermectin, Febantel, Praziquantel, Pyrantel Pamoate and Related Compounds in Fixed Dose Combination for Veterinary Use. Asian J. Pharm. Clin. Res. 2013, 6, 191–200.
  • Klausz, G.; Keller, É.; Sára, Z.; Székely-Körmöczy, P.; Laczay, P.; Ary, K.; Sótonyi, P.; Róna, K. Simultaneous Determination of Praziquantel, Pyrantel Embonate, Febantel and Its Active Metabolites, Oxfendazole and Fenbendazole, in Dog Plasma by Liquid Chromatography/Mass Spectrometry. Biomed. Chromatogr. 2015, 29, 1859–1865. DOI: 10.1002/bmc.3507..
  • Praziquantel Monograph. USP 43-NF38; United States Pharmacopoeial Convention: Rockville, MD, 2019. DOI: 10.31003/USPNF_M68450_04_01.
  • Praziquantel Monograph. European Pharmacopoeia 10.0; EDQM, Strasbourg, France, 2022; pp. 3621–3622.
  • FDA Foods and Veterinary Medicine Science and Research Steering Committee. Acceptance Criteria for Confirmation of Identity of Chemical Residues using Exact Mass Data within the Office of Foods and Veterinary Medicine. Memorandum. Department of Health & Human Services: Washington, DC, 2015.
  • Zhang, R.; Zhang, J.-C.; Zhang, W.-Y.; He, Y.-Q.; Cheng, H.; Chen, C.; Gu, Y.-C. A Practical Approach for the Transamidation of N,N-Dimethyl Amides with Primary Amines Promoted by Sodium Tert-Butoxide under Solvent-Free Conditions. Synthesis 2020, 52, 3286–3294. DOI: 10.1055/s-0040-1705892.
  • Ghosh, T.; Jana, S.; Dash, J. KOtBu-Promoted Transition-Metal-Free Transamidation of Primary and Tertiary Amides with Amines. Org. Lett. 2019, 21, 6690–6694. DOI: 10.1021/acs.orglett.9b02306.
  • Acosta-Guzmán, P.; Mateus-Gómez, A.; Gamba-Sánchez, D. Direct Transamidation Reactions: Mechanism and Recent Advances. Molecules 2018, 23, 2382. DOI: 10.3390/molecules23092382.
  • Lanigan, R. M.; Sheppard, T. D. Recent Developments in Amide Synthesis: Direct Amidation of Carboxylic Acids and Transamidation Reactions. Eur. J. Org. Chem. 2013, 2013, 7453–7465. DOI: 10.1002/ejoc.201300573.
  • Ramkumar, R.; Chandrasekaran, S. Catalyst-Free, Metal-Free, and Chemoselective Transamidation of Activated Secondary Amides. Synthesis 2019, 51, 921–932. DOI: 10.1055/s-0037-1610664.
  • Rosenberger, L.; Jenniches, J.; Essen, C. V.; Khutia, A.; Kühn, C.; Marx, A.; Georgi, K.; Hirsch, A. K. H.; Hartmann, R. W.; Badolo, L. Metabolic Profiling of S-Praziquantel: structure Elucidation Using the Crystalline Sponge Method in Combination with Mass Spectrometry and Nuclear Magnetic Resonance. Drug Metab. Dispos. 2022, 50, 320–326. DOI: 10.1124/dmd.121.000663.
  • Wang, H.; Fang, Z. Z.; Zheng, Y.; Zhou, K.; Hu, C.; Krausz, K. W.; Sun, D.; Idle, J. R.; Gonzalez, F. J. Metabolic Profiling of Praziquantel Enantiomers. Biochem. Pharmacol. 2014, 90, 166–178. DOI: 10.1016/j.bcp.2014.05.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.