73
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Differential compounds of licorice before and after honey roasted and anti-arrhythmia mechanism via LC-MS/MS and network pharmacology analysis

, , , , , , , & show all

References

  • Commission, C.-P. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, 2020. ISBN 9787521415759.
  • Rizzato, G.; Scalabrin, E.; Radaelli, M.; Capodaglio, G.; Piccolo, O. A New Exploration of Licorice Metabolome. Food Chem. 2017, 221, 959–968. DOI: 10.1016/j.foodchem.2016.11.068.
  • He, M.; Wu, H.; Nie, J.; Yan, P.; Yang, T.-B.; Yang, Z.-Y.; Pei, R. Accurate Recognition and Feature Qualify for Flavonoid Extracts from Liang-Wai Gan Cao by Liquid Chromatography-High Resolution-Mass Spectrometry and Computational MS/MS Fragmentation. J. Pharm. Biomed. Anal. 2017, 146, 37–47. DOI: 10.1016/j.jpba.2017.07.065.
  • Yuan, L.; Jiang, X.; Xu, Y.; Huang, M.; Chen, Y.; Yu, W.; Su, M.; Ye, Z.; Chen, X.; Wang, Y.; et al. Licochalcone a Inhibits Interferon-Gamma-Induced Programmed Death-Ligand 1 in Lung Cancer Cells. Phytomedicine 2021, 80, 153394. DOI: 10.1016/j.phymed.2020.153394.
  • Fu, Y.; Chen, J.; Li, Y.; Zheng, Y.; Li, P. Antioxidant and Anti-Inflammatory Activities of Six Flavonoids Separated from Licorice. Food Chem. 2013, 141, 1063–1071. DOI: 10.1016/j.foodchem.2013.03.089.
  • Jia, T.; Qiao, J.; Guan, D.; Chen, T. Anti-Inflammatory Effects of Licochalcone a on IL-1β-Stimulated Human Osteoarthritis Chondrocytes. Inflammation 2017, 40, 1894–1902. DOI: 10.1007/s10753-017-0630-5.
  • He, J.; Peng, H.; Wang, M.; Liu, Y.; Guo, X.; Wang, B.; Dai, L.; Cheng, X.; Meng, Z.; Yuan, L.; et al. Isoliquiritigenin Inhibits TGF-β1-Induced Fibrogenesis through Activating Autophagy via PI3K/AKT/mTOR Pathway in MRC-5 Cells. Acta Biochim. Biophys. Sin. 2020, 52, 810–820. DOI: 10.1093/abbs/gmaa067.
  • Lee, P.; Chu, P.; Hsieh, P.; Yang, H.; Chueh, P.-J.; Huang, Y.; Liao, Y.; Yu, C. Glabridin Inhibits the Activation of Myofibroblasts in Human Fibrotic Buccal Mucosal Fibroblasts through TGF-β/Smad Signaling. Environ. Toxicol. 2018, 33, 248–255. DOI: 10.1002/tox.22512.
  • Song, W.; Qiao, X.; Chen, K.; Wang, Y.; Ji, S.; Feng, J.; Li, K.; Lin, Y.; Ye, M. Biosynthesis-Based Quantitative Analysis of 151 Secondary Metabolites of Licorice to Differentiate Medicinal Glycyrrhiza Species and Their Hybrids. Anal. Chem. 2017, 89, 3146–3153. DOI: 10.1021/acs.analchem.6b04919.
  • Rui, Y.; Bo-Chuan, Y.; Ng-Sheng, M.-Y.; Shan, Z.; Hao-Zhen, Z.; Jing-Yi, L.; Wen-Dong, L.; Ying, L. Simultaneous Determination of Liquiritin, Isoliquiritin, Liquiritigenin and Isoliquiritigenin in Glycyrrhiza uralensis Fisch., Glycyrrhiza glabra L., and Glycyrrhiza inflata Bat. by HPLC. Chin. J. Pharm. Anal. 2016, 10, 1994–2019. DOI: 10.16155/j.0254-1793.2016.10.05.
  • Ota, M.; Xu, F.; Li, Y.; Shang, M.; Makino, T.; Cai, S. Comparison of Chemical Constituents among Licorice, Roasted Licorice, and Roasted Licorice with Honey. J. Nat. Med. 2018, 72, 80–95. DOI: 10.1007/s11418-017-1115-4.
  • Wen-Xin, W.; Yuan, S.; Fang-Zhou, Y.; Tu-Lin, L.; Wei-Dong, L.; Qian-Qian, X.; Yun-Feng, Z.; Chen Li-Hong, L.-X. Study on Quality Rapid Evaluation of Raw and Roasted Licorice Based on Color Digitization and Multi-Component Determination. China J. Chin. Mater. Med. 2022, 47, 6624–6632.. DOI: 10.19540/j.cnki.cjcmm.20210401.301.
  • Chen, L.; Lai, C.; Mao, L.; Yin, B.; Tian, M.; Jin, B.; Wei, X.; Chen, J.; Ge, H.; Zhao, X.; et al. Chemical Constituents in Different Parts of Seven Species of Aconitum Based on UHPLC-Q-TOF/MS. J. Pharm. Biomed. Anal. 2021, 193, 113713. DOI: 10.1016/j.jpba.2020.113713.
  • Dong, Y.; Jia, G.; Hu, J.; Liu, H.; Wu, T.; Yang, S.; Li, Y.; Cai, T. Determination of Alkaloids and Flavonoids in Sophora Flavescens by UHPLC-Q-TOF/MS. J. Anal. Methods Chem. 2021, 2021, 1–13. DOI: 10.1155/2021/9915027.
  • Liu, K.; Song, Y.; Liu, Y.; Peng, M.; Li, H.; Li, X.; Feng, B.; Xu, P.; Su, D. An Integrated Strategy Using UPLC-QTOF-MS(E) and UPLC-QTOF-MRM (Enhanced Target) for Pharmacokinetics Study of Wine Processed Schisandra Chinensis Fructus in Rats. J. Pharm. Biomed. Anal. 2017, 139, 165–178. DOI: 10.1016/j.jpba.2017.02.043.
  • Robin, J.; Aakriti, S.; Krishana, T.; Dinesh, K.; Gireesh, N. Metabolite Analysis and Nucleoside Determination Using Reproducible UHPLC-Q-ToF-IMS in Ophiocordyceps Sinensis. J. Liq. Chromatogr. Relat. Technol. 2018, 15–16, 927–936. DOI: 10.1080/10826076.2018.1541804.
  • Medicine, C.-A.-O.-C. Network Pharmacology Evaluation Method Guidance-Draft. World J. Tradit. Chin. Med. 2021, 7, 146–154.
  • Nih, N.-I.-O.-H. PubChem. https://pubchem.ncbi.nlm.nih.gov/ (accessed Jan 3, 2023).
  • Gao, M.; Cai, Q.; Si, H.; Shi, S.; Wei, H.; Lv, M.; Wang, X.; Dong, T. Isoliquiritigenin Attenuates Pathological Cardiac Hypertrophy via Regulating AMPKα In Vivo and In Vitro. J. Mol. Histol. 2022, 53, 679–689. DOI: 10.1007/s10735-022-10090-w.
  • An, W.; Yang, J.; Ao, Y. Metallothionein Mediates Cardioprotection of Isoliquiritigenin against Ischemia-Reperfusion through JAK2/STAT3 Activation. Acta Pharmacol. Sin. 2006, 27, 1431–1437. DOI: 10.1111/j.1745-7254.2006.00419.x.
  • Chu, S.; Wang, W.; Zhang, N.; Liu, T.; Li, J.; Chu, X.; Zuo, S.; Ma, Z.; Ma, D.; Chu, L. Protective Effects of 18β‐Glycyrrhetinic Acid against Myocardial Infarction: Involvement of PI3K/Akt Pathway Activation and Inhibiting Ca2+ Influx via L‐Type Ca2+ Channels. Food Sci. Nutr. 2021, 9, 6831–6843. DOI: 10.1002/fsn3.2639.
  • Jing, M.; Guoli, W.; Xiaowei, W.; Jinpeng, X. Licochalcone a Regulates miR-142-3p /FOXO1 Expression and Inhibits H2O2-Induced Cardiomyocyte Apoptosis. J. Shenyang Pharm. Univ. 2021, 38, 1076–1083. DOI: 10.14066/j.cnki.cn21-1349/r.2020.0035.
  • Singh, K.; Zaw, A.; Sekar, R.; Palak, A.; Allam, A.; Ajarem, J.; Chow, B. Glycyrrhizic Acid Reduces Heart Rate and Blood Pressure by a Dual Mechanism. Molecules 2016, 21, 1291. DOI: 10.3390/molecules21101291.
  • Li, L.; Fang, H.; Yu, Y.; Liu, S.; Yang, Z. Liquiritigenin Attenuates Isoprenaline‑Induced Myocardial Fibrosis in Mice through the TGF‑β1/Smad2 and AKT/ERK Signaling Pathways. Mol. Med. Rep. 2021, 24, 686. DOI: 10.3892/mmr.2021.12326.
  • Zhang, Y.; Zhang, L.; Zhang, Y.; Xu, J.-J.; Sun, L.-L.; Li, S.-Z. The Protective Role of Liquiritin in High Fructose-Induced Myocardial Fibrosis via Inhibiting NF-kappaB and MAPK Signaling Pathway. Biomed. Pharmacother. 2016, 84, 1337–1349. DOI: 10.1016/j.biopha.2016.10.036.
  • Xie, X.-W. Liquiritigenin Attenuates Cardiac Injury Induced by High Fructose-Feeding through Fibrosis and Inflammation Suppression. Biomed. Pharmacother. 2017, 86, 694–704. DOI: 10.1016/j.biopha.2016.12.066.
  • Hua, H.; Zhiwei, G.; Li, L.; Shufang, W. Effect of Licorice Flavonoids on the Cytotoxicity of Adriamycin and Its Conformational Relationship Study. Chin. Tradit. Herb. Drugs 2010, 41, 941–945.
  • SIB Swiss Institute of Bioinformatics, UNIL University of Lausanne. SwissTargetPrediction. http://www.swisstargetprediction.ch/ (accessed Jan 3, 2023).
  • The Weizmann Institute of Science, LifeMap Sciences. GeneCards. https://www.genecards.org/ (accessed Jan 3, 2023).
  • VIB-UGENT Center for Plant Biology, Vib, Ghent University. Draw Veen Diagram. http://bioinformatics.psb.ugent.be/webtools/Venn/ (accessed Jan 3, 2023).
  • Swiss Institute of Bioinformatics, Novo Nordisk Foundation Center Research, European Molecular Biology Laboratory. String. https://cn.string-db.org/ (accessed Jan 3, 2023).
  • Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.-H.; Tanaseichuk, O.; Benner, C.; Chanda, S.-K. Matescape. https://metascape.org/gp/index.html (accessed Jan 3, 2023).
  • Xiao, L.; Kan-Ping, S.; Kun-Ming, Q.; Jun-Jie, J.; Chao, Y.; Bao-Chang, C. Influence Evaluation of Processing on Chemical Composition of Baizhu Shaoyao Powder Based on UHPLC-Q-TOF-MS Technique. Chin. Tradit. Herb. Drugs 2022, 53, 3920–3928. DOI: 10.7501/j.issn.0253-2670.2022.13.005.
  • Vaya, J.; Belinky, P.-A.; Aviram, M. Antioxidant Constituents from Licorice Roots: isolation, Structure Elucidation and Antioxidative Capacity toward LDL Oxidation. Free Radic. Biol. Med. 1997, 23, 302–313. DOI: 10.1016/S0891-5849(97)00089-0.
  • Yuanyuan, C.; Yongfeng, Z.; Yanqin, M.; Jixiang, F.; Guoqiang, W.; Rongrong, Z.; Yi, D.; Ping, Z. Differences Analysis of Chemical Composition of Raw and Fried Glycyrrhiza uralensis Based on UPLC-QTOF-MS. China Pharmacy 2020, 31, 1049–1053. DOI: 10.6039/j.issn.1001-0408.2020.09.06.
  • Yang, Z.; Kirton, H.-M.; Al-Owais, M.; Thireau, J.; Richard, S.; Peers, C.; Steele, D.-S. Epac2-Rap1 Signaling Regulates Reactive Oxygen Species Production and Susceptibility to Cardiac Arrhythmias. Antioxid. Redox Signal. 2017, 27, 117–132. DOI: 10.1089/ars.2015.6485.
  • Ramos-Kuri, M.; Meka, S.-H.; Salamanca-Buentello, F.; Hajjar, R.-J.; Lipskaia, L.; Chemaly, E.-R. Molecules Linked to Ras Signaling as Therapeutic Targets in Cardiac Pathologies. Biol. Res. 2021, 54, 23. DOI: 10.1186/s40659-021-00342-6.
  • Mcmullen, J.-R.; Amirahmadi, F.; Woodcock, E.-A.; Schinke-Braun, M.; Bouwman, R.-D.; Hewitt, K.-A.; Mollica, J.-P.; Zhang, L.; Zhang, Y.; Shioi, T.; et al. Protective Effects of Exercise and Phosphoinositide 3-Kinase(p110α) Signaling in Dilated and Hypertrophic Cardiomyopathy. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 612–617. DOI: 10.1073/pnas.0606663104.
  • Pretorius, L.; Du, X.; Woodcock, E.-A.; Kiriazis, H.; Lin, R.-C.-Y.; Marasco, S.; Medcalf, R.-L.; Ming, Z.; Head, G.-A.; Tan, J.-W.; et al. Reduced Phosphoinositide 3-Kinase (p110α) Activation Increases the Susceptibility to Atrial Fibrillation. Am. J. Pathol. 2009, 175, 998–1009. DOI: 10.2353/ajpath.2009.090126.
  • Moreira, L.-M.; Takawale, A.; Hulsurkar, M.; Menassa, D.-A.; Antanaviciute, A.; Lahiri, S.-K.; Mehta, N.; Evans, N.; Psarros, C.; Robinson, P.; et al. Paracrine Signalling by Cardiac Calcitonin Controls Atrial Fibrogenesis and Arrhythmia. Nature 2020, 587, 460–465. DOI: 10.1038/s41586-020-2890-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.