105
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Hydrophilic molecularly imprinted chitosan microspheres based on deep eutectic solvents for micro-solid phase extraction of catechin

, , &

References

  • Ferreira, L. T.; de Sousa Filho, C. P. B.; Marinovic, M. P.; Alice, C. R.; Rosemari, O. Green Tea Polyphenols Positively Impact Hepatic Metabolism of Adiponectin-Knockout Lean Mice. J. Funct. Foods. 2020, 64, 103679–103689. DOI: 10.1016/j.jff.2019.103679.
  • Samadi, S.; Fard, F. R. Phytochemical Properties, Antioxidant Activity and Mineral Content (Fe, Zn and Cu) in Iranian Produced Black Tea, Green Tea and Roselle Calyces. Biocatal. Agric. Biotechnol. 2020, 23, 101472. DOI: 10.1016/j.bcab.2019.101472.
  • Hodges, J. K.; Zhu, J.; Yu, Z.; Vodovotz, Y.; Brock, G.; Sasaki, G. Y.; Dey, P.; Bruno, R. S. Intestinal-Level anti-Inflammatory Bioactivities of Catechin-Rich Green Tea: Rationale, Design, and Methods of a Double-Blind, Randomized, Placebo-Controlled Crossover Trial in Metabolic Syndrome and Healthy Adults. Contemp. Clin. Trials Commun. 2020, 17, 100495–100507. DOI: 10.1016/j.conctc.2019.100495.
  • Wakamatsu, M.; Yamanouchi, H.; Sahara, H.; Iwanaga, T.; Kuroda, R.; Yamamoto, A.; Minami, Y.; Sekijima, M.; Yamada, K.; Kajiya, K. Catechin and Caffeine Contents in Green Tea at Different Harvest Periods and Their Metabolism in Miniature Swine. Food Sci. Nutr. 2019, 7, 2769–2778. DOI: 10.1002/fsn3.1143.
  • Zhang, N.; Zhang, N.; Xu, Y.; Li, Z.; Yan, C.; Mei, K.; Ding, M.; Ding, S.; Guan, P.; Qian, L.; et al. Molecularly Imprinted Materials for Selective Biological Recognition. Macromol. Rapid Commun. 2019, 40, 1900096. DOI: 10.1002/marc.201900096.
  • Li, F.; Gao, J.; Li, X. X.; Li, Y.; He, X.; Chen, L.; Zhang, Y. Preparation of Magnetic Molecularly Imprinted Polymers Functionalized Carbon Nanotubes for Highly Selective Removal of Aristolochic Acid. J. Chromatogr. A. 2019, 1602, 168–177. DOI: 10.1016/j.chroma.2019.06.043.
  • Nicholls, I. A.; Andersson, H. S.; Golker, K.; Henschel, H.; Karlsson, B. C. G.; Olsson, G. D.; Rosengren, A. M.; Shoravi, S.; Suriyanarayanan, S.; Wiklander, J. G.; Wikman, S. Rational Design of Biomimetic Molecularly Imprinted Materials: Theoretical and Computational Strategies for Guiding Nanoscale Structured Polymer Development. Anal. Bioanal. Chem. 2011, 400, 1771–1786. DOI: 10.1007/s00216-011-4935-1.
  • Li, F.; Li, X.; Su, J.; Li, Y.; He, X.; Chen, L.; Zhang, Y. Hydrophilic Molecularly Imprinted Polymers Functionalized Magnetic Carbon Nanotubes for Selective Extraction of Cyclic Adenosine Monophosphate from Winter Jujube. J. Sep. Sci. 2021, 44, 2131–2142. DOI: 10.1002/jssc.202001095.
  • Alvarez-Lorenzo, C.; Concheiro, A. Molecularly Imprinted Materials as Advanced Excipients for Drug Delivery Systems. Biotechnol. Annu. Rev. 2006, 12, 225–268. DOI: 10.1016/S1387-2656(06)12007-4.
  • Keçili, R.; Yılmaz, E.; Ersöz, A.; Say, R. Imprinted Materials: From Green Chemistry to Sustainable Engineering. Sustain. Nanoscale Eng. 2020, 2020, 317–350.
  • Li, F.; Li, X.; Su, J.; Li, Y.; He, X.; Chen, L.; Zhang, Y. A Strategy of Utilizing Cu2+-Mediating Interaction to Prepare Magnetic Imprinted Polymers for the Selective Detection of Celastrol in Traditional Chinese Medicines. Talanta. 2021, 231, 122339. DOI: 10.1016/j.talanta.2021.122339.
  • Piletsky, S.; Canfarotta, F.; Poma, A.; Bossi, A. M.; Piletsky, S. Molecularly Imprinted Polymers for Cell Recognition. Trends Biotechnol. 2020, 38, 368–387. DOI: 10.1016/j.tibtech.2019.10.002.
  • Ahmad, O. S.; Bedwell, T. S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S. A. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotechnol. 2019, 37, 294–309. DOI: 10.1016/j.tibtech.2018.08.009.
  • Ren, L.; Xu, J.; Zhang, Y.; Zhou, J.; Chen, D.; Chang, Z. Preparation and Characterization of Porous Chitosan Microspheres and Adsorption Performance for Hexavalent Chromium. Int. J. Biol. Macromol. 2019, 135, 898–906. DOI: 10.1016/j.ijbiomac.2019.06.007.
  • Li, X.; Cui, K.; Guo, Z.; Yang, T.; Cao, Y.; Xiang, Y.; Chen, H.; Xi, M. Heterogeneous Fenton-like Degradation of Tetracyclines Using Porous Magnetic Chitosan Microspheres as an Efficient Catalyst Compared with Two Preparation Methods. Chem. Eng. J. 2020, 379, 122324. DOI: 10.1016/j.cej.2019.122324.
  • Wang, B.; Bai, Z.; Jiang, H.; Prinsen, P.; Luque, R.; Zhao, S.; Xuan, J. Selective Heavy Metal Removal and Water Purification by Microfluidically-Generated Chitosan Microspheres: Characteristics, Modeling and Application. J. Hazard Mater. 2019, 364, 192–205. DOI: 10.1016/j.jhazmat.2018.10.024.
  • Xiao, X.; Li, Z.; Liu, Y.; Jia, L. Preparation of Chitosan‐Based Molecularly Imprinted Material for Enantioseparation of Racemic Mandelic Acid in Aqueous Medium by Solid Phase Extraction. J. Sep. Sci. 2019, 42, 3544–3552. DOI: 10.1002/jssc.201900825.
  • Deng, P.; Xu, Z.; Kuang, Y. Electrochemical Determination of Bisphenol a in Plastic Bottled Drinking Water and Canned Beverages Using a Molecularly Imprinted Chitosan–Graphene Composite Film Modified Electrode. Food Chem. 2014, 157, 490–497. DOI: 10.1016/j.foodchem.2014.02.074.
  • Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Abroa-Nemeir, I.; Halima, H. B.; Gallardo-Gonzalez, J.; Hassani, N. E. A. E.; Alcacer, A.; Bausells, J.; Jaffrezic-Renault, N.; et al. Electrochemical Impedance Spectroscopy Determination of Glyphosate Using a Molecularly Imprinted Chitosan. Sens. Actuators, B. 2020, 309, 127753. DOI: 10.1016/j.snb.2020.127753.
  • Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. DOI: 10.1021/ja048266j.
  • Chen, J.; Li, Y.; Wang, X.; Liu, W. Application of Deep Eutectic Solvents in Food Analysis: A Review. Molecules. 2019, 24, 4594–4966. DOI: 10.3390/molecules24244594.
  • Shishov, A.; Bulatov, A.; Locatelli, M.; Carradori, S.; Andruch, V. Application of Deep Eutectic Solvents in Analytical Chemistry. A Review. Microchem. J. 2017, 135, 33–38. DOI: 10.1016/j.microc.2017.07.015.
  • Ibrahim, R. K.; Hayyan, M.; AlSaadi, M. A.; Ibrahim, S.; Hayyan, A.; Hashim, M. A. Physical Properties of Ethylene Glycol-Based Deep Eutectic Solvents. J. Mol. Liq. 2019, 276, 794–800. DOI: 10.1016/j.molliq.2018.12.032.
  • Zdanowicz, M.; Wilpiszewska, K.; Spychaj, T. Deep Eutectic Solvents for Polysaccharides Processing. A Review. Carbohydr. Polym. 2018, 200, 361–380. DOI: 10.1016/j.carbpol.2018.07.078.
  • Xu, K.; Xu, P.; Wang, Y. Aqueous Biphasic Systems Formed by Hydrophilic and Hydrophobic Deep Eutectic Solvents for the Partitioning of Dyes. Talanta. 2020, 213, 120839. DOI: 10.1016/j.talanta.2020.120839.
  • Blahová, E.; Lehotay, J.; Skačáni, I. The Use of Molecularly Imprinted Polymer for Selective Extraction of (+)-Catechin. J. Liq. Chromatogr. Relat. Technol. 2004, 27, 2715–2731. DOI: 10.1081/JLC-200029276.
  • Jin, Y.; Row, K. H. Solid-Phase Extraction of Caffeine and Catechin Compounds from Green Tea by Caffeine Molecular Imprinted Polymer. Bull. Korean Chem. Soc. 2007, 28, 276–280.
  • López, M. M. C.; Pérez, M. C. C.; García, M. S. D.; Vilariño, J. M. L.; Rodríguez, M. V. G.; Losada, L. F. B. Preparation, Evaluation and Characterization of Quercetin-Molecularly Imprinted Polymer for Preconcentration and Clean-up of Catechins. Anal. Chim. Acta. 2012, 721, 68–78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.