143
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Emerging approaches for the detection of trimethylamine N-oxide: A gut derived metabolite

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Kim, S.; Jazwinski, S. M. The Gut Microbiota and Healthy Aging: A Mini-Review. Gerontology 2018, 64, 513–520. DOI: 10.1159/000490615.
  • Lynch, S. V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016, 375, 2369–2379. DOI: 10.1056/nejmra1600266.
  • Cho, C. E.; Caudill, M. A. Trimethylamine-N-Oxide: Friend, Foe, or Simply Caught in the Cross-Fire? Trends Endocrinol. Metab. 2017, 28, 121–130. DOI: 10.1016/j.tem.2016.10.005.
  • Strøm, A. R.; Olafsen, J. A.; Larsen, H. Trimethylamine Oxide: A Terminal Electron Acceptor in Anaerobic Respiration of Bacteria. J. Gen. Microbiol. 1979, 112, 315–320. DOI: 10.1099/00221287-112-2-315.
  • Lupachyk, S.; Watcho, P.; Stavniichuk, R.; Shevalye, H.; Obrosova, I. G. Endoplasmic Reticulum Stress Plays a Key Role in the Pathogenesis of Diabetic Peripheral Neuropathy. Diabetes 2013, 62, 944–952. DOI: 10.2337/db12-0716.
  • Kumemoto, R.; Yusa, K.; Shibayama, T.; Hatori, K. Trimethylamine N-Oxide Suppresses the Activity of the Actomyosin Motor. Biochim. Biophys. Acta 2012, 1820, 1597–1604. DOI: 10.1016/j.bbagen.2012.06.006.
  • Velasquez, M. T.; Ramezani, A.; Manal, A.; Raj, D. S. Trimethylamine N-Oxide: The Good, the Bad and the Unknown. Toxins 2016, 8, 326. DOI: 10.3390/toxins8110326.
  • Gątarek, P.; Kałużna-Czaplińska, J. Trimethylamine N-Oxide (TMAO) in Human Health. EXCLI J. 2021, 20, 301–319. DOI: 10.17179/excli2020-3239.
  • Rio, D.; Del; Zimetti, F.; Caffarra, P.; Tassotti, M.; Bernini, F.; Brighenti, F.; Zini, A.; Zanotti, I. The Gut Microbial Metabolite Trimethylamine-N-Oxide Is Present in Human Cerebrospinal Fluid. Nutrients 2017, 9, 1–4. DOI: 10.3390/nu9101053.
  • Coutinho-Wolino, K. S.; Ludmila, L. F. M.; de Oliveira Leal, V.; Mafra, D.; Stockler-Pinto, M. B. Can Diet Modulate Trimethylamine N-Oxide (TMAO) Production? What Do We Know So Far? Eur. J. Nutr. 2021, 60, 3567–3584. DOI: 10.1007/s00394-021-02491-6.
  • Wang, J.; Gu, X.; Yang, J.; Wei, Y.; Zhao, Y. Gut Microbiota Dysbiosis and Increased Plasma LPS and TMAO Levels in Patients with Preeclampsia. Front. Cell Infect Microbiol. 2019, 9, 409. DOI: 10.3389/fcimb.2019.00409.
  • Yancey, P. H. Organic Osmolytes as Compatible, Metabolic and Counteracting Cytoprotectants in High Osmolarity and Other Stresses. J. Exp. Biol. 2005, 208, 2819–2830. DOI: 10.1242/jeb.01730.
  • Lu, W. H.; Chiu, H. H.; Kuo, H. C.; Chen, G. Y.; Chepyala, D.; Kuo, C. H. Using Matrix-Induced Ion Suppression Combined with LC-MS/MS for Quantification of Trimethylamine-N-Oxide, Choline, Carnitine and Acetylcarnitine in Dried Blood Spot Samples. Anal. Chim. Acta 2021, 1149, 338214. DOI: 10.1016/j.aca.2021.338214.
  • Veeravalli, S.; Karu, K.; Phillips, I. R.; Shephard, E. A. A Highly Sensitive Liquid Chromatography Electrospray Ionization Mass Spectrometry Method for Quantification of TMA, TMAO and Creatinine in Mouse Urine. MethodsX 2017, 4, 310–319. DOI: 10.1016/j.mex.2017.09.004.
  • Hatton, A. D.; Gibb, S. W. A Technique for the Determination of Trimethylamine-N-Oxide in Natural Waters and Biological Media. Anal. Chem. 1999, 71, 4886–4891. DOI: 10.1021/ac990366y.
  • Zeisel, S. H.; Warrier, M. Trimethylamine N-Oxide, the Microbiome, and Heart and Kidney Disease. Annu. Rev. Nutr. 2017, 37, 157–181. DOI: 10.1146/annurev-nutr-071816.
  • Withers, P. C.; Morrison, G.; Hefter, G. T.; Pang, T.-S. Role of Urea and Methylamines in Buoyancy of Elasmobranchs. J. Exp. Biol. 1994, 188, 175–189. DOI: 10.1242/jeb.188.1.175.
  • Zuo, H.; Svingen, G. F. T.; Tell, G. S.; Ueland, P. M.; Vollset, S. E.; Pedersen, E. R.; Ulvik, A.; Meyer, K.; Nordrehaug, J. E.; Nilsen, D. W. T.; et al. Plasma Concentrations and Dietary Intakes of Choline and Betaine in Association with Atrial Fibrillation Risk: Results from 3 Prospective Cohorts with Different Health Profiles. J. Am. Heart Assoc. 2018, 7, 2–11. DOI: 10.1161/JAHA.117.008190.
  • Canyelles, M.; Borràs, C.; Rotllan, N.; Tondo, M.; Escolà-Gil, J. C.; Blanco-Vaca, F. Gut Microbiota-Derived TMAO: A Causal Factor Promoting Atherosclerotic Cardiovascular Disease? Int. J. Mol. Sci. 2023, 24, 1940. DOI: 10.3390/ijms24031940.
  • Wang, Z.; Tang, W. H. W.; Buffa, J. A.; Fu, X.; Britt, E. B.; Koeth, R. A.; Levison, B. S.; Fan, Y.; Wu, Y.; Hazen, S. L. Prognostic Value of Choline and Betaine Depends on Intestinal Microbiota-Generated Metabolite Trimethylamine-N-Oxide. Eur. Heart J. 2014, 35, 904–910. DOI: 10.1093/eurheartj/ehu002.
  • Yu, H.; Geng, W. C.; Zheng, Z.; Gao, J.; Guo, D. S.; Wang, Y. Facile Fluorescence Monitoring of Gut Microbial Metabolite Trimethylamine N-Oxide via Molecular Recognition of Guanidinium-Modified Calixarene. Theranostics 2019, 9, 4624–4632. DOI: 10.7150/thno.33459.
  • Janeiro, M. H.; Ramírez, M. J.; Milagro, F. I.; Martínez, J. A.; Solas, M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients 2018, 10, 1398. DOI: 10.3390/nu10101398.
  • Wang, Z.; Klipfell, E.; Bennett, B. J.; Koeth, R.; Levison, B. S.; Dugar, B.; Feldstein, A. E.; Britt, E. B.; Fu, X.; Chung, Y. M.; et al. Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature 2011, 472, 57–63. DOI: 10.1038/nature09922.
  • Dong, Z.; Liang, Z.; Guo, M.; Hu, S.; Shen, Z.; Hai, X. The Association between Plasma Levels of Trimethylamine N-Oxide and the Risk of Coronary Heart Disease in Chinese Patients with or without Type 2 Diabetes Mellitus. Dis. Markers 2018, 2018, 1578320–1578327. DOI: 10.1155/2018/1578320.
  • Ufnal, M.; Jazwiec, R.; Dadlez, M.; Drapala, A.; Sikora, M.; Skrzypecki, J. Trimethylamine-N-Oxide: A Carnitine-Derived Metabolite That Prolongs the Hypertensive Effect of Angiotensin II in Rats. Can. J. Cardiol. 2014, 30, 1700–1705. DOI: 10.1016/j.cjca.2014.09.010.
  • Zhu, W.; Gregory, J. C.; Org, E.; Buffa, J. A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165, 111–124. DOI: 10.1016/j.cell.2016.02.011.
  • Lee, M. B.; Storer, M. K.; Blunt, J. W.; Lever, M. Validation of 1H NMR Spectroscopy as an Analytical Tool for Methylamine Metabolites in Urine. Clin. Chim. Acta 2006, 365, 264–269. DOI: 10.1016/j.cca.2005.09.004.
  • Prokopienko, A. J.; West, R. E.; Stubbs, J. R.; Nolin, T. D. Development and Validation of a UHPLC-MS/MS Method for Measurement of a Gut-Derived Uremic Toxin Panel in Human Serum: An Application in Patients with Kidney Disease. J. Pharm. Biomed. Anal. 2019, 174, 618–624. DOI: 10.1016/j.jpba.2019.06.033.
  • Chang, Y. C.; Chu, Y. H.; Wang, C. C.; Wang, C. H.; Tain, Y. L.; Yang, H. W. Rapid Detection of Gut Microbial Metabolite Trimethylamine N-Oxide for Chronic Kidney Disease Prevention. Biosensors 2021, 11, 339. DOI: 10.3390/bios11090339.
  • Toyohara, T.; Akiyama, Y.; Suzuki, T.; Takeuchi, Y.; Mishima, E.; Tanemoto, M.; Momose, A.; Toki, N.; Sato, H.; Nakayama, M.; et al. Metabolomic Profiling of Uremic Solutes in CKD Patients. Hypertens. Res. 2010, 33, 944–952. DOI: 10.1038/hr.2010.113.
  • Hai, X.; Landeras, V.; Dobre, M. A.; DeOreo, P.; Meyer, T. W.; Hostetter, T. H. Mechanism of Prominent Trimethylamine Oxide (TMAO) Accumulation in Hemodialysis Patients. PLoS One 2015, 10, e0143731. DOI: 10.1371/journal.pone.0143731.
  • Missailidis, C.; Hällqvist, J.; Qureshi, A. R.; Barany, P.; Heimbürger, O.; Lindholm, B.; Stenvinkel, P.; Bergman, P. Serum Trimethylamine-N-Oxide is Strongly Related to Renal Function and Predicts Outcome in Chronic Kidney Disease. PLoS One 2016, 11, e0141738. DOI: 10.1371/journal.pone.0141738.
  • Serkova, N.; Fuller, T. F.; Klawitter, J.; Freise, C. E.; Niemann, C. U. H-NMR-Based Metabolic Signatures of Mild and Severe Ischemia/Reperfusion Injury in Rat Kidney Transplants. Kidney Int. 2005, 67, 1142–1151. DOI: 10.1111/j.1523-1755.2005.00181.x.
  • Jalandra, R.; Dalal, N.; Yadav, A. K.; Verma, D.; Sharma, M.; Singh, R.; Khosla, A.; Kumar, A.; Solanki, P. R. Emerging Role of Trimethylamine-N-Oxide (TMAO) in Colorectal Cancer. Appl. Microbiol. Biotechnol. 2021, 105, 7651–7660. DOI: 10.1007/s00253-021-11582-7.
  • Steinke, I.; Ghanei, N.; Govindarajulu, M.; Yoo, S.; Zhong, J.; Amin, R. H. Drug Discovery and Development of Novel Therapeutics for Inhibiting TMAO in Models of Atherosclerosis and Diabetes. Front. Physiol. 2020, 11, 567899. DOI: 10.3389/fphys.2020.567899.
  • Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K. B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. DOI: 10.3390/ijms21176275.
  • Lanz, M.; Janeiro, M. H.; Milagro, F. I.; Puerta, E.; Ludwig, I. A.; Pineda-Lucena, A.; Ramírez, M. J.; Solas, M. Trimethylamine N-Oxide (TMAO) Drives Insulin Resistance and Cognitive Deficiencies in a Senescence Accelerated Mouse Model. Mech. Ageing Dev. 2022, 204, 111668. DOI: 10.1016/j.mad.2022.111668.
  • Ramraje, G. R.; Patil, S. D.; Patil, P. H.; Pawar, A. R. A Brief Review on: Separation Techniques Chromatography. Asian J. Pharm. Anal. 2020, 10, 231–238. DOI: 10.5958/2231-5675.2020.00041.1.
  • Aluç, Y.; Başaran Kankılıç, G.; Tüzün, İ. Determination of Carotenoids in Two Algae Species from the Saline Water of Kapulukaya Reservoir by HPLC. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 93–100. DOI: 10.1080/10826076.2017.1418376.
  • Wang, M.; Liu, D. Detection of Antioxidant Butylated Hydroxytoluene (BHT) in Antarctic Krill (Euphausia superba Dana). J. Liq. Chromatogr. Relat. Technol. 2017, 40, 725–731. DOI: 10.1080/10826076.2017.1357570.
  • Chandra Reddy, B. J.; Sarada, N. C. Development and Validation of a Novel RP-HPLC Method for Stability-Indicating Assay of Abiraterone Acetate. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 354–363. DOI: 10.1080/10826076.2016.1163500.
  • Fiddler, W.; Doerr, R. C.; Gates, R. A. Gas Chromatographic Method for Determination of Dimethylamine, Trimethylamine, and Trimethylamine Oxide in Fish-Meat Frankfurters. J. Assoc. Off. Anal. Chem. 1991, 74, 400–403. DOI: 10.1093/jaoac/74.2.400.
  • Kaur, G.; Sharma, S. Gas Chromatography – A Brief Review. Int. J. Inform. Computing Sci. 2018, 5, 125–131.
  • Wheeler, M. J.; Hutchinson, J. S. M.; Honour, J. W. Gas Chromatography-Mass Spectrometry. Methods Mol. Biol. 2006, 324, 53–74. DOI: 10.1385/1-59259-986-9:53.
  • Zhu, Z.; Guo, W. Recent Developments on Rapid Detection of Main Constituents in Milk: A Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 312–324. DOI: 10.1080/10408398.2020.1731417.
  • Sánchez-Guijo, A.; Hartmann, M. F.; Wudy, S. A. Introduction to Gas Chromatography-Mass Spectrometry. Methods Mol. Biol. 2013, 1065, 27–44. DOI: 10.1007/978-1-62703-616-0_3.
  • Iglesias-Carres, L.; Essenmacher, L. A.; Racine, K. C.; Neilson, A. P. Development of a High-Throughput Method to Study the Inhibitory Effect of Phytochemicals on Trimethylamine Formation. Nutrients 2021, 13, 1466. DOI: 10.3390/nu13051466.
  • daCosta, K. A.; Vrbanac, J. J.; Zeisel, S. H. The Measurement of Dimethylamine, Trimethylamine, and Trimethylamine A/-Oxide Using Capillary Gas Chromatography-Mass Spectrometry. Anal. Biochem. 1990, 187, 234–239. DOI: 10.1016/0003-2697(90)90449-J.
  • Jha, S. N.; Jaiswal, P.; Grewal, M. K.; Gupta, M.; Bhardwaj, R. Detection of Adulterants and Contaminants in Liquid Foods—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1662–1684. DOI: 10.1080/10408398.2013.798257.
  • Mamer, O. A.; Choinière, L.; Lesimple, A. Measurement of Urinary Trimethylamine and Trimethylamime Oxide by Direct Infusion Electrospray Quadrupole Time-of-Flight Mass Spectrometry. Anal. Biochem. 2010, 406, 80–82. DOI: 10.1016/j.ab.2010.06.038.
  • Mamer, O. A.; Choiniè, L.; Treacy, E. P. Measurement of Trimethylamine and Trimethylamine N-Oxide Independently in Urine by Fast Atom Bombardment Mass Spectrometry. Anal. Biochem. 1999, 276, 144–149. DOI: 10.1006/abio.1999.4351.
  • Abualhasan, M.; Shraim, F.; Alawni, H.; Hamdan, S.; Khaseeb, H. HPLC Analytical Method Development and Validation of Gabapentin through Chemical Derivatization with Catechol as a Chromophore. Int. J. Anal. Chem. 2022, 2022, 3882682–3882688. DOI: 10.1155/2022/3882682.
  • Li, X. (.; Li, S.; Kellermann, G. A Simple Dilute and Shoot Approach Incorporated with Pentafluorophenyl (PFP) Column Based LC-MS/MS Assay for the Simultaneous Determination of Trimethylamine N-Oxide and Trimethylamine in Spot Urine Samples with High Throughput. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1067, 61–70. DOI: 10.1016/j.jchromb.2017.09.049.
  • Nikolin, B.; Imamović, B.; Medanhodzić-Vuk, S.; Sober, M. High Perfomance Liquid Chromatography in Pharmaceutical Analyses. Bosn. J. Basic Med. Sci. 2004, 4, 5–9. DOI: 10.17305/bjbms.2004.3405.
  • Pu, H.; Huang, Z.; Sun, D. W.; Fu, H. Recent Advances in the Detection of 17β-Estradiol in Food Matrices: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2144–2157. DOI: 10.1080/10408398.2019.1611539.
  • Sun, X. D.; Zhang, M.; Zhang, S.; Chen, Y. X.; Chen, J. H.; Wang, P. J.; Gao, X. L. Classification of Rosa Roxburghii Tratt from Different Geographical Origins Using Non-Targeted HPLC-UV-FLD Fingerprints and Chemometrics. Food Control. 2024, 155, 110087. DOI: 10.1016/j.foodcont.2023.110087.
  • Bekhit, A. E. D. A.; Giteru, S. G.; Holman, B. W. B.; Hopkins, D. L. Total Volatile Basic Nitrogen and Trimethylamine in Muscle Foods: Potential Formation Pathways and Effects on Human Health. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3620–3666. DOI: 10.1111/1541-4337.12764.
  • Bota, G. M.; Harrington, P. B. Direct Detection of Trimethylamine in Meat Food Products Using Ion Mobility Spectrometry. Talanta 2006, 68, 629–635. DOI: 10.1016/j.talanta.2005.05.001.
  • Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. DOI: 10.3390/s21041109.
  • Guo, Y. Analysis of Quaternary Amine Compounds by Hydrophilic Interaction Chromatography/Mass Spectrometry (HILIC/MS). J. Liq. Chromatogr. Relat. Technol. 2005, 28, 497–512. DOI: 10.1081/JLC-200047200.
  • Ascah, T. L.; Kallury, K. M. R.; Szafranski, C. A.; Corman, S. D.; Liu, F. Characterization and High-Performance Liquid Chromatographic Evaluation of a New Amide-Functionalized Reversed Phase Column. J. Liq. Chromatogr. Relat. Technol. 1996, 19, 3049–3073. DOI: 10.1080/10826079608015125.
  • Buszewski, B.; Noga, S. Hydrophilic Interaction Liquid Chromatography (HILIC)-a Powerful Separation Technique. Anal. Bioanal. Chem. 2012, 402, 231–247. DOI: 10.1007/s00216-011-5308-5.
  • Yu, W.; Xu, C.; Li, G.; Hong, W.; Zhou, Z.; Xiao, C.; Zhao, Y.; Cai, Y.; Huang, M.; Jin, J. Simultaneous Determination of Trimethylamine N-Oxide, Choline, Betaine by UPLC–MS/MS in Human Plasma: An Application in Acute Stroke Patients. J. Pharm. Biomed. Anal. 2018, 152, 179–187. DOI: 10.1016/j.jpba.2018.01.049.
  • Li, Y.; Kang, J.; Lee, Y.; Chung, J. Y.; Cho, J. Y. A Validated Simple LC-MS/MS Method for Quantifying Trimethylamine N-Oxide (TMAO) Using a Surrogate Matrix and Its Clinical Application. Transl. Clin. Pharmacol. 2021, 29, 216–225. DOI: 10.12793/tcp.2021.29.e19.
  • Li, W.; Tse, F. L. S. Dried Blood Spot Sampling in Combination with LC-MS/MS for Quantitative Analysis of Small Molecules. Biomed. Chromatogr. 2010, 24, 49–65. DOI: 10.1002/bmc.1367.
  • Ciccimaro, E.; Blair, I. A. Stable-Isotope Dilution LC-MS for Quantitative Biomarker Analysis. Bioanalysis 2010, 2, 311–341. DOI: 10.4155/bio.09.185.
  • Zhang, K.; Wong, J. W.; Hayward, D. G.; Vaclavikova, M.; Liao, C. D.; Trucksess, M. W. Determination of Mycotoxins in Milk-Based Products and Infant Formula Using Stable Isotope Dilution Assay and Liquid Chromatography Tandem Mass Spectrometry. J. Agric. Food Chem. 2013, 61, 6265–6273. DOI: 10.1021/jf4018838.
  • Wang, Z.; Levison, B. S.; Hazen, J. E.; Donahue, L.; Li, X. M.; Hazen, S. L. Measurement of Trimethylamine-N-Oxide by Stable Isotope Dilution Liquid Chromatography Tandem Mass Spectrometry. Anal. Biochem. 2014, 455, 35–40. DOI: 10.1016/j.ab.2014.03.016.
  • Soler, C.; Mañes, J.; Picó, Y. The Role of the Liquid Chromatography-Mass Spectrometry in Pesticide Residue Determination in Food. Crit. Rev. Anal. Chem. 2008, 38, 93–117. DOI: 10.1080/10408340801922250.
  • Malaeb, H.; Choucair, I.; Wang, Z.; Li, X. S.; Li, L.; Boyd, W. C.; Hine, C.; Tang, W. H. W.; Gogonea, V.; Hazen, S. L. Stable Isotope Dilution Mass Spectrometry Quantification of Hydrogen Sulfide and Thiols in Biological Matrices. Redox Biol. 2022, 55, 102401. DOI: 10.1016/j.redox.2022.102401.
  • Bhandari, D.; Bowman, B. A.; Patel, A. B.; Chambers, D. M.; De Jesús, V. R.; Blount, B. C. UPLC-ESI-MS/MS Method for the Quantitative Measurement of Aliphatic Diamines, Trimethylamine N-Oxide, and β-Methylamino-L-Alanine in Human Urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1083, 86–92. DOI: 10.1016/j.jchromb.2018.02.043.
  • Lajin, B.; Goessler, W. Fluorinated Carboxylic Acids as “Ion Repelling Agents” in Reversed-Phase Chromatography. J. Chromatogr. A 2020, 1631, 461575. DOI: 10.1016/j.chroma.2020.461575.
  • Hefni, M. E.; Bergström, M.; Lennqvist, T.; Fagerström, C.; Witthöft, C. M. Simultaneous Quantification of Trimethylamine N-Oxide, Trimethylamine, Choline, Betaine, Creatinine, and Propionyl-, Acetyl-, and l-Carnitine in Clinical and Food Samples Using HILIC-LC-MS. Anal. Bioanal. Chem. 2021, 413, 5349–5360. DOI: 10.1007/s00216-021-03509-y.
  • Kadar, H.; Dubus, J.; Dutot, J.; Hedjazi, L.; Srinivasa, S.; Fitch, K. V.; Grinspoon, S. K.; Nicholson, J. K.; Dumas, M. E.; Gauguier, D. A Multiplexed Targeted Assay for High-Throughput Quantitative Analysis of Serum Methylamines by Ultra Performance Liquid Chromatography Coupled to High Resolution Mass Spectrometry. Arch. Biochem. Biophys. 2016, 597, 12–20. DOI: 10.1016/j.abb.2016.03.029.
  • Wills, R. B. H.; Silalahi, J.; Wootton, M. Simultaneous Determination of Food-Related Amines by High-Performance Liquid Chromatography. J. Liq. Chromatogr. 1987, 10, 3183–3191. DOI: 10.1080/01483918708068306.
  • Mi, S.; Zhao, Y. Y.; Jacobs, R. L.; Curtis, J. M. Simultaneous Determination of Trimethylamine and Trimethylamine N-Oxide in Mouse Plasma Samples by Hydrophilic Interaction Liquid Chromatography Coupled to Tandem Mass Spectrometry. J. Sep. Sci. 2017, 40, 688–696. DOI: 10.1002/jssc.201600926.
  • Xiao, J. F.; Zhou, B.; Ressom, H. W. Metabolite Identification and Quantitation in LC-MS/MS-Based Metabolomics. Trends Analyt. Chem. 2012, 32, 1–14. DOI: 10.1016/j.trac.2011.08.009.
  • Silvestro, L.; Tarcomnicu, I.; Rizea, S. Matrix Effects in Mass Spectrometry Combined with Separation Methods—Comparison HPLC, GC and Discussion on Methods to Control These Effects. Tandem Mass Spectr. Molec. Charact. 2013, 1, 1–37. DOI: 10.5772/55982.
  • Beale, R.; Airs, R. Quantification of Glycine Betaine, Choline and Trimethylamine N-Oxide in Seawater Particulates: Minimisation of Seawater Associated Ion Suppression. Anal. Chim. Acta 2016, 938, 114–122. DOI: 10.1016/j.aca.2016.07.016.
  • Tuzimski, T.; Petruczynik, A. Review of Chromatographic Methods Coupled with Modern Detection Techniques Applied in the Therapeutic Drugs Monitoring (TDM). Molecules 2020, 25, 4026. DOI: 10.3390/molecules25174026.
  • Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. DOI: 10.1042/EBC20150001.
  • Mehrotra, P. Biosensors and Their Applications - A Review. J. Oral Biol. Craniofac. Res. 2016, 6, 153–159. DOI: 10.1016/j.jobcr.2015.12.002.
  • Xiao-Wei, H.; Zhi-Hua, L.; Xiao-Bo, Z.; Ji-Yong, S.; Han-Ping, M.; Jie-Wen, Z.; Li-Min, H.; Holmes, M. Detection of Meat-Borne Trimethylamine Based on Nanoporous Colorimetric Sensor Arrays. Food Chem. 2016, 197, 930–936. DOI: 10.1016/j.foodchem.2015.11.041.
  • Qi, G.; Qu, F.; Zhang, L.; Chen, S.; Bai, M.; Hu, M.; Lv, X.; Zhang, J.; Wang, Z.; Chen, W. Nanoporous Graphene Oxide-Based Quartz Crystal Microbalance Gas Sensor with Dual-Signal Responses for Trimethylamine Detection. Sensors 2022, 22, 9939. DOI: 10.3390/s22249939.
  • Zhao, C.; Shen, J.; Xu, S.; Wei, J.; Liu, H.; Xie, S.; Pan, Y.; Zhao, Y.; Zhu, Y. Ultra-Efficient Trimethylamine Gas Sensor Based on Au Nanoparticles Sensitized WO3 Nanosheets for Rapid Assessment of Seafood Freshness. Food Chem. 2022, 392, 133318. DOI: 10.1016/j.foodchem.2022.133318.
  • Gamati, S.; Luong, J. H. T.; Mulchandani, A. A Microbial Biosensor for Trimethylamine Using Pseudomonas Aminovorans Cells. Biosens. Bioelectron. 1991, 6, 125–131. DOI: 10.1016/0956-5663(91)87036-b.
  • Lakshmi, G. B. V. S.; Yadav, A. K.; Mehlawat, N.; Jalandra, R.; Solanki, P. R.; Kumar, A. Gut Microbiota Derived Trimethylamine N-Oxide (TMAO) Detection through Molecularly Imprinted Polymer Based Sensor. Sci. Rep. 2021, 11, 1338. DOI: 10.1038/s41598-020-80122-6.
  • Harrison, E. E.; Waters, M. L. Application of an Imprint-and-Report Sensor Array for Detection of the Dietary Metabolite Trimethylamine N-Oxide and Its Precursors in Complex Mixtures. Angew. Chem. Int. Ed. Engl. 2022, 61, e202205193. DOI: 10.1002/anie.202205193.
  • Mitrova, B.; Waffo, A. F. T.; Kaufmann, P.; Nivol, C. I.; Leimkühler, S.; Wollenberger, U. Trimethylamine N-Oxide Electrochemical Biosensor with a Chimeric Enzyme. ChemElectroChem 2019, 6, 1732–1737. DOI: 10.1002/celc.201801422.
  • Grieshaber, D.; Mackenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors-Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. DOI: 10.3390/s80314000.
  • Waffo, A. F. T.; Mitrova, B.; Tiedemann, K.; Iobbi-Nivol, C.; Leimkühler, S.; Wollenberger, U. Electrochemical Trimethylamine N-Oxide Biosensor with Enzyme-Based Oxygen-Scavenging Membrane for Long-Term Operation under Ambient Air. Biosensors 2021, 11, 98. DOI: 10.3390/BIOS11040098.
  • Yi, Y.; Liang, A.; Luo, L.; Zang, Y.; Zhao, H.; Luo, A. A Novel Real-Time TMAO Detection Method Based on Microbial Electrochemical Technology. Bioelectrochemistry 2022, 144, 108038. DOI: 10.1016/j.bioelechem.2021.108038.
  • An, W. F.; Tolliday, N. J. Introduction: Cell-Based Assays for High-Throughput Screening. Methods Mol. Biol. 2009, 486, 1–12. DOI: 10.1007/978-1-60327-545-3_1.
  • Zhang, W.; Sun, J.; Wang, F.; Liu, J.; Han, Y.; Jiang, M.; Tang, D. Fluorescent Assay for Quantitative Analysis of Trimethylamine: N-Oxide. Anal. Methods 2021, 13, 1527–1534. DOI: 10.1039/d0ay02353a.
  • Marion, D. An Introduction to Biological NMR Spectroscopy. Mol. Cell Proteomics 2013, 12, 3006–3025. DOI: 10.1074/mcp.O113.030239.
  • Bottomley, P. A. NMR in Medicine. Comput. Radiol. 1984, 8, 57–77. DOI: 10.1016/0730-4862(84)90065-9.
  • Zia, K.; Siddiqui, T.; Ali, S.; Farooq, I.; Zafar, M. S.; Khurshid, Z. Nuclear Magnetic Resonance Spectroscopy for Medical and Dental Applications: A Comprehensive Review. Eur. J. Dent. 2019, 13, 124–128. DOI: 10.1055/s-0039-1688654.
  • Garcia, E.; Wolak-Dinsmore, J.; Wang, Z.; Li, X. S.; Bennett, D. W.; Connelly, M. A.; Otvos, J. D.; Hazen, S. L.; Jeyarajah, E. J. NMR Quantification of Trimethylamine-N-Oxide in Human Serum and Plasma in the Clinical Laboratory Setting. Clin. Biochem. 2017, 50, 947–955. DOI: 10.1016/j.clinbiochem.2017.06.003.
  • Kuang, H.; Li, Z.; Peng, C.; Liu, L.; Xu, L.; Zhu, Y.; Wang, L.; Xu, C. Metabonomics Approaches and the Potential Application in Foodsafety Evaluation. Crit. Rev. Food Sci. Nutr. 2012, 52, 761–774. DOI: 10.1080/10408398.2010.508345.
  • He, M.; Yu, H.; Lei, P.; Huang, S.; Ren, J.; Fan, W.; Han, L.; Yu, H.; Wang, Y.; Ren, M.; Jiang, M. Determination of Trimethylamine N-Oxide and Betaine in Serum and Food by Targeted Metabonomics. Molecules 2021, 26, 1334. DOI: 10.3390/molecules26051334.
  • Nedelcheva, D.; Antonova, D.; Tsvetkova, S.; Marekov, I.; Momchilova, S.; Nikolova-Damyanova, B.; Gyosheva, M. TLC and GC-MS Probes into the Fatty Acid Composition of Some Lycoperdaceae Mushrooms. J. Liq. Chromatogr. Relat. Technol. 2007, 30, 2717–2727. DOI: 10.1080/10826070701560629.
  • Al-Sayah, M. A.; Liu, Y.; Helmy, R.; Yehl, P. Using Oxidation-Reduction Chemistry in Sample Preparation for Sub-PPM Quantitation by LC/MS. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 729–732. DOI: 10.1080/10826076.2014.962150.
  • Medina-Medrano, J. R.; Mares-Quiñones, M. D.; Valiente-Banuet, J. I.; Vázquez-Sánchez, M.; Álvarez-Bernal, D.; Villar-Luna, E. Determination and Quantification of Phenolic Compounds in Methanolic Extracts of Solanum Ferrugineum (Solanaceae) Fruits by HPLC-DAD and HPLC/ESI-MS/TOF. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 900–906. DOI: 10.1080/10826076.2017.1382376.
  • Yalçın, S.; Şükran Okudan, E.; Karakaş, Ö.; Önem, A. N.; Sözgen Başkan, K. Identification and Quantification of Some Phytohormones in Seaweeds Using UPLC-MS/MS. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 475–484. DOI: 10.1080/10826076.2019.1625374.
  • Ferrari, A. G. M.; Crapnell, R. D.; Banks, C. E. Electroanalytical Overview: Electrochemical Sensing Platforms for Food and Drink Safety. Biosensors 2021, 11, 291. DOI: 10.3390/bios11080291.
  • Soleymani, L.; Li, F. Mechanistic Challenges and Advantages of Biosensor Miniaturization into the Nanoscale. ACS Sens. 2017, 2, 458–467. DOI: 10.1021/acssensors.7b00069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.