45
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Chromatographic characterization of new spirohydantoins derived from β-tetralone

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Konnert, L.; Lamaty, F.; Martinez, J.; Colacino, E. Recent Advances in the Synthesis of Hydantoins: The State of the Art of a Valuable Scaffold. Chem. Rev. 2017, 117, 13757–13809. DOI: 10.1021/acs.chemrev.7b00067.
  • Abdulrahman, L. K.; Al-Mously, M. M.; Al-Mosuli, M. L.; Al-Azzawii, K. K. The Biological Activity of 5,5'-Imidazoline-2,4-Dione Derivatives. Int. J. Pharm. Pharm. Sci. 2013, 5, 494–504.
  • Zhang, M.; Liang, Y.-R.; Li, H.; Liu, M.-M.; Wang, Y. Design, Synthesis, and Biological Evaluation of Hydantoin Bridged Analogues of Combretastatin A-4 as Potential Anticancer Agents. Bioorg. Med. Chem. 2017, 25, 6623–6634. DOI: 10.1016/j.bmc.2017.10.045.
  • Abdel-Aziz, A. A.-M.; El-Azab, A. S.; Abou-Zeid, L. A.; ElTahir, K. E. H.; Abdel-Aziz, N. I.; Ayyad, R. R.; Al-Obaid, A. M. Synthesis, anti-Inflammatory, Analgesic and COX-1/2 Synthesis, anti-Inflammatory, Analgesic and COX-1/2 Inhibition Activities of Anilides Based on 5,5-Diphenylimidazolidine-2,4-Dione Scaffold: Molecular Docking Studies. Eur. J. Med. Chem. 2016, 115, 121–131. DOI: 10.1016/j.ejmech.2016.03.011.
  • Tijsma, A.; Thibaut, H. J.; Franco, D.; Dallmeier, K.; Neyts, J. Hydantoin: The Mechanism of Its in Vitro anti-Enterovirus Activity Revisited. Antiviral Res. 2016, 133, 106–109. DOI: 10.1016/j.antiviral.2016.07.023.
  • Tot, K.; Lazić, A.; Božić, B.; Mandić, A.; Djaković Sekulić, T. QSAR Characterization of New Synthesized Hydantoins with Antiproliferative Activity. Biomed. Chromatogr. 2019, 33, e4539. DOI: 10.1002/bmc.4539.
  • Czopek, A.; Byrtus, H.; Kołaczkowski, M.; Pawłowski, M.; Dybała, M.; Nowak, G.; Tatarczyńska, E.; Wesołowska, A.; Chojnacka-Wójcik, E. Synthesis and Pharmacological Evaluation of New 5-(Cyclo)Alkyl-5-Phenyl- and 5-Spiroimidazolidine-2,4-Dione Derivatives. Novel 5-HT1A Receptor Agonist with Potential Antidepressant and Anxiolytic Activity. Eur. J. Med. Chem. 2010, 45, 1295–1303. DOI: 10.1016/j.ejmech.2009.11.053.
  • Iqbal, Z.; Hameed, S.; Ali, S.; Tehseen, Y.; Shahid, M.; Iqbal, J. Synthesis, Characterization, Hypoglycemic and Aldose Reductase Inhibition Activity of Arylsulfonylspiro[Fluorene-9,5’-Imidazolidine]-2’,4’-Diones. Eur. J. Med. Chem. 2015, 98, 127–138. DOI: 10.1016/j.ejmech.2015.05.011.
  • Iqbal, Z.; Ali, S.; Iqbal, J.; Abbas, Q.; Qureshi, I. Z.; Hameed, S. Dual Action Spirobicycloimidazolidine-2,4-Diones: Antidiabetic Agents and Inhibitors of Aldose Reductase-an Enzyme Involved in Diabetic Complications. Bioorg. Med. Chem. Lett. 2013, 23, 488–491. DOI: 10.1016/j.bmcl.2012.11.039.
  • Patel, H. J.; Sarra, J.; Caruso, F.; Rossi, M.; Doshi, U.; Stephani, R. A. Synthesis and Anticonvulsant Activity of New N-1′,N-3′-Disubstituted-2′H,3H,5′H-Spiro-(2-Benzofuran-1,4′-Imidazolidine)-2′,3,5′-Triones. Bioorg. Med. Chem. Lett. 2006, 16, 4644–4647. DOI: 10.1016/j.bmcl.2006.05.102.
  • Obniska, J.; Byrtus, H.; Kamiński, K.; Pawłowski, M.; Szczesio, M.; Karolak-Wojciechowska, J. Design, Synthesis, and Anticonvulsant Activity of New N-Mannich Bases Derived from Spirosuccinimides and Spirohydantoins. Bioorg. Med. Chem. 2010, 18, 6134–6142. DOI: 10.1016/j.bmc.2010.06.064.
  • Byrtus, H.; Pawłowski, M.; Czopek, A.; Bojarski, A. J.; Duszyńska, B.; Nowak, G.; Kłodzińska, A.; Tatarczyńska, E.; Wesołowska, A.; Chojnacka-Wójcik, E. Synthesis and 5-HT1A, 5-HT2A Receptor Activity of New β-Tetralonohydantoins. Eur. J. Med. Chem. 2005, 40, 820–829. DOI: 10.1016/j.ejmech.2004.07.013.
  • Czopek, A.; Kołaczkowski, M.; Bucki, A.; Byrtus, H.; Pawłowski, M.; Kazek, G.; Bojarski, A. J.; Piaskowska, A.; Kalinowska-Tłuścik, J.; Partyka, A.; Wesołowska, A. Novel Sspirohydantoin Derivative as a Potent Multireceptor-Active Antipsychotic and Antidepressant Agent. Bioorg. Med. Chem. 2015, 23, 3436–3447. DOI: 10.1016/j.bmc.2015.04.026.
  • Czopek, A.; Byrtus, H.; Zagórska, A.; Siwek, A.; Kazek, G.; Bednarski, M.; Sapa, J.; Pawłowski, M. Design, Synthesis, Anticonvulsant, and Antiarrhythmic Properties of Novel N-Mannich Base and Amide Derivatives of β-Tetralinohydantoin. Pharmacol. Rep. 2016, 68, 886–893. DOI: 10.1016/j.pharep.2016.04.018.
  • Stegemann, S.; Moreton, C.; Svanbäck, S.; Box, K.; Motte, G.; Paudel, A. Trends in Oral Small-Molecule Drug Discovery and Product Development Based on Product Launches before and after the Rule of Five, Drug Discov. Today 2023, 28, 1–13. DOI: 10.1016/j.drudis.2022.103344.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Developmental Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. DOI: 10.1016/S0169-409X(96)00423-1.
  • Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. J. Med. Chem. 2000, 43, 3714–3717. DOI: 10.1021/jm000942e.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. DOI: 10.1016/s0169-409x(00)00129-0.
  • Refsgaard, H. H. F.; Jensen, B. F.; Brockhoff, P. B.; Padkjaer, S. B.; Guldbrandt, M.; Christensen, M. S. In Silico Prediction of Membrane Permeability from Calculated Molecular Parameters. J. Med. Chem. 2005, 48, 805–811. DOI: 10.1021/jm049661n.
  • Guan, L.; Yang, H.; Cai, Y.; Sun, L.; Di, P.; Li, W.; Liu, G.; Tang, Y. ADMET-Score – a Comprehensive Scoring Function for Evaluation of Chemical Drug-Likeness. Medchemcomm. 2019, 10, 148–157. DOI: 10.1039/C8MD00472B.
  • Héberger, K. Quantitative Structure–(Chromatographic) Retention Relationships. J. Chromatogr. A 2007, 1158, 273–305. DOI: 10.1016/j.chroma.2007.03.108.
  • Chen, B.; Zhang, T.; Bond, T.; Gan, Y. Development of Quantitative Structure Activity Relationship (QSAR) Model for Disinfection Byproduct (DBP) Research: A Review of Methods and Resources. J. Hazard. Mater. 2015, 299, 260–279. DOI: 10.1016/j.jhazmat.2015.06.054.
  • Soares, J. X.; Santos, A.; Fernandes, C.; Pinto, M. M. M. Liquid Chromatography on the Different Methods for the Determination of Lipophilicity: An Essential Analytical Tool in Medicinal Chemistry. Chemosensors 2022, 10, 340. DOI: 10.3390/chemosensors10080340.
  • OECD Guidelines for the Testing of Chemicals. Section 1, Test No. 107: Partition Coefficient (n-Octanol/Water): Shake Flask Method. OECD Publishing, Paris, 1995. DOI: 10.1787/9789264069626-en.
  • OECD Guidelines for the Testing of Chemicals. Section 1, Test No. 117: Partition Coefficient (n-Octanol/Water), HPLC Method. OECD Publishing, Paris, 2022. DOI: 10.1787/9789264069824-en.
  • OECD Guidelines for the Testing of Chemicals. Section 1, Test No. 123: Partition Coefficient (1-Octanol/Water): Slow-Stirring Method. OECD Publishing, Paris, 2022. DOI: 10.1787/9789264015845-en.
  • Suzuki, H.; Kneller, M. B.; Rock, D. A.; Jones, J. P.; Trager, W. F.; Rettie, A. E. Active-Site Characteristics of CYP2C19 and CYP2C9 Probed with Hydantoin and Barbiturate Inhibitors. Arch. Biochem. Biophys. 2004, 429, 1–15. DOI: 10.1016/j.abb.2004.05.015.
  • Lazić, A. M.; Đorđević, I. S.; Radovanović, L. D.; Popović, D. M.; Rogan, J. R.; Janjić, G. V.; Trišović, N. P. Self-Assembly and Biorecognition of a Spirohydantoin Derived from α-Tetralone: Interplay between Chirality and Intermolecular Interactions. Chempluschem. 2020, 85, 1220–1232. DOI: 10.1002/cplu.202000273.
  • Bate-Smith, E. C.; Westall, R. G. Chromatographic Behaviour and Chemical Structure I. Some Naturally Occuring Phenolic Substances. Biochim. Biophys. Acta 1950, 4, 427–440. DOI: 10.1016/0006-3002(50)90049-7.
  • Liapikos, T.; Zisi, C.; Kodra, D.; Kademoglou, K.; Diamantidou, D.; Begou, O.; Pappa-Louisi, A.; Theodoridis, G. Quantitative Structure Retention Relationship (QSRR) Modelling for Analytes’ Retention Prediction in LC-HRMS by Applying Different Machine Learning Algorithms and Evaluating Their Performance. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1191, 123132. DOI: 10.1016/j.jchromb.2022.123132.
  • Ciura, K.; Belka, M.; Kawczak, P.; Bączek, T.; Nowakowska, J. The Comparative Study of Micellar TLC and RP-TLC as Potential Tools for Lipophilicity Assessment Based on QSRR Approach. J. Pharm. Biomed. Anal. 2018, 149, 70–79. DOI: 10.1016/j.jpba.2017.10.034.
  • Ciura, K.; Kawczak, P.; Greber, K. E.; Kapica, H.; Nowakowska, J.; Bączek, T. Application of Reversed-Phase Thin Layer Chromatography and QSRR Modelling for Prediction of Protein Binding of Selected β-Blockers. J. Pharm. Biomed. Anal. 2019, 176, 112767. DOI: 10.1016/j.jpba.2019.07.015.
  • Kaiser, H. F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. DOI: 10.1177/00131644600200.
  • Dross, K.; Rekker, R. F.; de Vries, G.; Mannhold, R. The Lipophilic Behaviour of Organic Compounds: 3. The Search for Interconnections between Reversed-Phase Chromatographic Data and Log Pfoct Values. Quant. Struct-Act. Relat. 1998, 17, 549–557. DOI: 10.1002/(SICI)1521-3838(199812)17:06<549::AID-QSAR549>3.0.CO;2-1.
  • Komsta, Ł.; Skibiński, R.; Berecka, A.; Gumieniczek, A.; Radkiewicz, B.; Radoń, M. Revisiting Thin-Layer Chromatography as a Lipophilicity Determination Tool - A Comparative Study on Several Techniques with a Model Solute Set. J. Pharm. Biomed. Anal. 2010, 53, 911–918. DOI: 10.1016/j.jpba.2010.06.024.
  • QSAR: Hansch Analysis and Related Approaches. Kubinyi, H., Ed. VCH, Weinheim, 1993.
  • Zhu, H.; Shen, Z.; Tang, Q.; Ji, W.; Jia, L. Degradation Mechanism Study of Organic Pollutants in Ozonation Process by QSAR Analysis. Chem. Eng. J. 2014, 255, 431–436. DOI: 10.1016/j.cej.2014.05.073.
  • Ionut, I.; Tiperciuc, B.; Oniga, O. Lipophilicity Evaluation of Some N1-Arylidene-Thiosemicarbazones and 1,3,4-Thiadiazolines with Antimicrobial Activity. J. Chromatogr. Sci. 2017, 55, 411–416. DOI: 10.1093/chromsci/bmw195.
  • Stoica, C. I.; Ionuț, I.; Vlase, L.; Tiperciuc, B.; Marc, G.; Oniga, S.; Araniciu, C.; Oniga, O. Lipophilicity Evaluation of Some Thiazolyl-1,3,4-Oxadiazole Derivatives with Antifungal Activity. Biomed. Chromatogr. 2018, 32, e4221. DOI: 10.1002/bmc.4221.
  • Zhang, L.; Zhang, M.; Wang, L. X.; Wang, Q. S. Relationship between the Lipophilicity and Specific Hydrophobic Surface Area of Some Pesticides by RP-HPLC and HPTLC. Chromatographia 2000, 52, 305–308. DOI: 10.1007/BF02491022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.