49
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Exploring advanced strategies in SPME-HPLC-DAD: Enhancing analytical precision and diverse applications in modern era

, , , &

References

  • Feng, J.; Feng, J.; Ji, X.; Li, C.; Han, S.; Sun, H.; Sun, M. Recent Advances of Covalent Organic Frameworks for Solid-Phase Microextraction. TrAC, Trends Anal. Chem. 2021, 137, 116208. DOI: 10.1016/j.trac.2021.116208.
  • Weggler, B. A.; Gruber, B.; Teehan, P.; Jaramillo, R.; Dorman, F. L. Inlets and Sampling. In Sep. Sci. Technol. 2020, 12, 141–203.
  • Merkle, S.; Kleeberg, K. K.; Fritsche, J. Recent Developments and Applications of Solid Phase Microextraction (SPME) in Food and Environmental Analysis—a Review. Chromatography 2015, 2, 293–381. DOI: 10.3390/chromatography2030293.
  • Piri-Moghadam, H.; Ahmadi, F.; Pawliszyn, J. A Critical Review of Solid Phase Microextraction for Analysis of Water Samples. TrAC, Trends Anal. Chem. 2016, 85, 133–143. DOI: 10.1016/j.trac.2016.05.029.
  • Moliner-Martinez, Y.; Herráez-Hernández, R.; Verdú-Andrés, J.; Molins-Legua, C.; Campíns-Falcó, P. Recent Advances of in-Tube Solid-Phase Microextraction. TrAC, Trends Anal. Chem. 2015, 71, 205–213. DOI: 10.1016/j.trac.2015.02.020.
  • Li, J.; Wang, Y.-B.; Li, K.-Y.; Cao, Y.-Q.; Wu, S.; Wu, L. Advances in Different Configurations of Solid-Phase Microextraction and Their Applications in Food and Environmental Analysis. TrAC, Trends Anal. Chem. 2015, 72, 141–152. DOI: 10.1016/j.trac.2015.04.023.
  • Öztürk Er, E.; Dalgıç Bozyiğit, G.; Büyükpınar, Ç.; Bakırdere, S. Magnetic Nanoparticles Based Solid Phase Extraction Methods for the Determination of Trace Elements. Crit. Rev. Anal. Chem. 2022, 52, 231–249. DOI: 10.1080/10408347.2020.1797465.
  • Santos, N. H.; Zapata, J.; Dereix, J. D.; Escobar, J.; de Almeida, A. B.; Silva, F. G.; Egea, M. B. The Active Aroma of “Cerrado” Cashew and Cagaita Fruits: Comparison between Two Extraction Methods. Appl. Sci. 2022, 12, 3330. DOI: 10.3390/app12073330.
  • Zhu, W.; Qin, P.; Han, L.; Zhang, X.; Li, D.; Li, M.; Wang, Y.; Zhang, X.; Lu, M.; Cai, Z.; et al. Gas-Cycle-Assisted Headspace Solid-Phase Microextraction Coupled with Gas Chromatography for Rapid Analysis of Organic Pollutants. Chem. Commun. (Camb) 2021, 57, 8810–8813. DOI: 10.1039/d1cc02771a.
  • Dowlatshah, S.; Ghiasvand, A.; Barkhordari, A.; Jalili, V. Layer-by-Layer Coating of Graphene Oxide on Fused Silica Fibers for Headspace Sampling of Nicotine in Hair Samples. Anal. Bioanalyt. Chem. Res. 2021, 8, 15–25.
  • Jalili, V.; Barkhordari, A.; Ghiasvand, A. A Comprehensive Look at Solid-Phase Microextraction Technique: A Review of Reviews. Microchem. J. 2020, 152, 104319. DOI: 10.1016/j.microc.2019.104319.
  • Asadi, S.; Maddah, B. Rapid Screening of Chemical Warfare Agents (Nerve Agents) Using Dimethyl Methylphosphonate as Simulant Substances in Beverages by Hollow Fiber Membrane-Protected Solid Phase Microextraction Followed by Corona Discharge Ion Mobility Spectrometry. J. Chromatogr. A 2022, 1661, 462704. DOI: 10.1016/j.chroma.2021.462704.
  • Hou, X.; Tang, S.; Wang, J. Recent Advances and Applications of Graphene-Based Extraction Materials in Food Safety. TrAC, Trends Anal. Chem. 2019, 119, 115603. DOI: 10.1016/j.trac.2019.07.014.
  • Trujillo-Rodríguez, M. J.; Pacheco-Fernández, I.; Taima-Mancera, I.; Díaz, J. H. A.; Pino, V. Evolution and Current Advances in Sorbent-Based Microextraction Configurations. J. Chromatogr. A 2020, 1634, 461670. DOI: 10.1016/j.chroma.2020.461670.
  • de Sousa Galvão, M.; de Santana, K. L.; Nogueira, J. P.; Neta, M. T. S. L.; Narain, N. Method Optimization Study on Isolation of Volatile Compounds by Headspace Solid-Phase Microextraction (HS-SPME) from Custard Apple (Annona Squamosa L.) Pulp. JASMI. 2020, 10, 59–77. DOI: 10.4236/jasmi.2020.103005.
  • Badawy, M. E.; El-Nouby, M. A.; Kimani, P. K.; Lim, L. W.; Rabea, E. I. A Review of the Modern Principles and Applications of Solid-Phase Extraction Techniques in Chromatographic Analysis. Anal. Sci. 2022, 38, 1457–1487. DOI: 10.1007/s44211-022-00190-8.
  • Queiroz, M. E. C.; de Souza, I. D.; Marchioni, C. Current Advances and Applications of in-Tube Solid-Phase Microextraction. TrAC, Trends Anal. Chem. 2019, 111, 261–278. DOI: 10.1016/j.trac.2018.12.018.
  • Su, H.; Lin, H.-H.; Su, L.-J.; Lin, C.-C.; Jiang, Z.-H.; Chen, S.-J.; Shiea, J.; Lee, C.-W. Direct Immersion Solid-Phase Microextraction Combined with Ambient Ionization Tandem Mass Spectrometry to Rapidly Distinguish Pesticides in Serum for Emergency Diagnostics. J. Food Drug Anal. 2022, 30, 26–37. DOI: 10.38212/2224-6614.3399.
  • Shyamalagowri, S.; Shanthi, N.; Manjunathan, J.; Kamaraj, M.; Manikandan, A.; Aravind, J. Techniques for the Detection and Quantification of Emerging Contaminants. Phy. Sci. Rev. 2021, 8, 2191–2218. DOI: 10.1515/psr-2021-0055.
  • Perera, D. N.; Hewavitharana, G. G.; Navaratne, S. Comprehensive Study on the Acrylamide Content of High Thermally Processed Foods. Biomed Res. Int. 2021, 2021, 6258508. DOI: 10.1155/2021/6258508.
  • Al-Khshemawee, H.; Du, X.; Agarwal, M.; Yang, J. O.; Ren, Y. L. Application of Direct Immersion Solid-Phase Microextraction (DI-SPME) for Understanding Biological Changes of Mediterranean Fruit Fly (Ceratitis Capitata) during Mating Procedures. Molecules 2018, 23, 2951. DOI: 10.3390/molecules23112951.
  • Thomas, C. F.; Zeh, E.; Dörfel, S.; Zhang, Y.; Hinrichs, J. Studying Dynamic Aroma Release by Headspace-Solid Phase Microextraction-Gas Chromatography-Ion Mobility Spectrometry (HS-SPME-GC-IMS): Method Optimization, Validation, and Application. Anal. Bioanal. Chem. 2021, 413, 2577–2586. DOI: 10.1007/s00216-021-03222-w.
  • Chen, Y.; Li, P.; Liao, L.; Qin, Y.; Jiang, L.; Liu, Y. Characteristic Fingerprints and Volatile Flavor Compound Variations in Liuyang Douchi during Fermentation via HS-GC-IMS and HS-SPME-GC-MS. Food Chem. 2021, 361, 130055. DOI: 10.1016/j.foodchem.2021.130055.
  • Lancioni, C.; Castells, C.; Candal, R.; Tascon, M. Headspace Solid-Phase Microextraction: Fundamentals and Recent Advances. Adv. Sample Preparat. 2022, 3, 100035. DOI: 10.1016/j.sampre.2022.100035.
  • Xiao, R.; Zhang, X.; Zhang, X.; Niu, J.; Lu, M.; Liu, X.; Cai, Z. Analysis of Flavors and Fragrances by HPLC with Fe3O4@ GO Magnetic Nanocomposite as the Adsorbent. Talanta 2017, 166, 262–267. DOI: 10.1016/j.talanta.2017.01.065.
  • Tian, Y.; Feng, J.; Wang, X.; Luo, C.; Sun, M. Ionic Liquid-Functionalized Silica Aerogel as Coating for Solid-Phase Microextraction. J. Chromatogr. A 2019, 1583, 48–54. DOI: 10.1016/j.chroma.2018.11.018.
  • Rewar, A. S.; Shaligram, S. V.; Kharul, U. K. Polybenzimidazole Based Polymeric Ionic Liquids Possessing Partial Ionic Character: Effects of Anion Exchange on Their Gas Permeation Properties. J. Membr. Sci. 2016, 497, 282–288. DOI: 10.1016/j.memsci.2015.09.019.
  • Sun, M.; Feng, J.; Bu, Y.; Luo, C. Nanostructured-Silver-Coated Polyetheretherketone Tube for Online in-Tube Solid-Phase Microextraction Coupled with High-Performance Liquid Chromatography. J. Sep. Sci. 2015, 38, 3239–3246. DOI: 10.1002/jssc.201500545.
  • Kayali-Sayadi, M.; Polo-Díez, L.; Rios-Acevedo, J. On-Line HPLC/SPME Interface Using Dynamic Extraction. J. Phys: Conf. Ser. 2020, 1541, 012009. DOI: 10.1088/1742-6596/1541/1/012009.
  • Aresta, A.; De Vietro, N.; Zambonin, C. Ultra-Trace Determination of Sudan I, II, III, and IV in Wastewater by Solid-Phase Microextraction (SPME) and on-Line Solid-Phase Extraction (SPE) with High-Performance Liquid Chromatography (HPLC). Anal. Lett. 2020, 53, 2559–2570. DOI: 10.1080/00032719.2020.1747481.
  • Cárdenes, L.; Ayala, J. H.; Afonso, A. M.; González, V. Solid-Phase Microextraction Coupled with High-Performance Liquid Chromatography for the Analysis of Heterocyclic Aromatic Amines. J. Chromatogr. A 2004, 1030, 87–93. DOI: 10.1016/j.chroma.2003.10.040.
  • Filipiak, W.; Bojko, B. SPME in Clinical, Pharmaceutical, and Biotechnological Research–How Far Are we from Daily Practice? TrAC, Trends Anal. Chem. 2019, 115, 203–213. DOI: 10.1016/j.trac.2019.02.029.
  • Zambonin, C.; Aresta, A. Recent Applications of Solid Phase Microextraction Coupled to Liquid Chromatography. Separations 2021, 8, 34. DOI: 10.3390/separations8030034.
  • Gutiérrez-Serpa, A.; Schorn-García, D.; Jiménez-Moreno, F.; Jiménez-Abizanda, A. I.; Pino, V. Braid Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons by Using Fibers Coated with Silver-Based Nanomaterials in Combination with HPLC with Fluorometric Detection. Microchim. Acta 2019, 186, 1–11. DOI: 10.1007/s00604-019-3452-3.
  • Marín-San Román, S.; Carot, J. M.; de Urturi, I. S.; Rubio-Bretón, P.; Pérez-Álvarez, E. P.; Garde-Cerdán, T. Optimization of Thin Film-microextraction (TF-SPME) Method in Order to Determine Musts Volatile Compounds. Anal. Chim. Acta. 2022, 1226, 340254. DOI: 10.1016/j.aca.2022.340254.
  • Zheng, J.; Kuang, Y.; Zhou, S.; Gong, X.; Ouyang, G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal. Chem. 2023, 95, 218–237. DOI: 10.1021/acs.analchem.2c03246.
  • Peng, S.; Huang, X.; Huang, Y.; Huang, Y.; Zheng, J.; Zhu, F.; Xu, J.; Ouyang, G. Novel Solid-Phase Microextraction Fiber Coatings: A Review. J. Sep. Sci. 2022, 45, 282–304. DOI: 10.1002/jssc.202100634.
  • Yuan, Z.-C.; Li, W.; Wu, L.; Huang, D.; Wu, M.; Hu, B. Solid-Phase Microextraction Fiber in Face Mask for in Vivo Sampling and Direct Mass Spectrometry Analysis of Exhaled Breath Aerosol. Anal. Chem. 2020, 92, 11543–11547. DOI: 10.1021/acs.analchem.0c02118.
  • Harvey, C. A.; Carter, J. C.; Ertel, J. R.; Alviso, C. T.; Chinn, S. C.; Maxwell, R. S. Fiber-Based Solid Phase Microextraction Using Fused Silica Lined Bottles to Collect, Store, and Stabilize a Multianalyte Headspace Gas Sample for Offline Analyses. J. Chromatogr. A 2015, 1401, 1–8. DOI: 10.1016/j.chroma.2015.04.032.
  • Zang, X.; Chang, Q.; Li, H.; Zhao, X.; Zhang, S.; Wang, C.; Wang, Z. Construction of a Ringent Multi-Shelled Hollow MIL-88B as the Solid-Phase Microextraction Fiber Coating for the Extraction of Organochlorine Pesticides. Sep. Purif. Technol. 2023, 304, 122350. DOI: 10.1016/j.seppur.2022.122350.
  • Song, X.; Li, X.; Wang, J.; Huang, X. Adoption of New Strategy for Molecularly Imprinted Polymer Based in-Tube Solid Phase Microextraction to Improve Specific Recognition Performance and Extraction Efficiency. Microchem. J. 2023, 194, 109224. DOI: 10.1016/j.microc.2023.109224.
  • Delińska, K.; Rakowska, P. W.; Kloskowski, A. Porous Material-Based Sorbent Coatings in Solid-Phase Microextraction Technique: recent Trends and Future Perspectives. TrAC, Trends Anal. Chem. 2021, 143, 116386. DOI: 10.1016/j.trac.2021.116386.
  • Ponce-Rodríguez, H. D.; Verdú-Andrés, J.; Herráez-Hernández, R.; Campíns-Falcó, P. Innovations in Extractive Phases for in-Tube Solid-Phase Microextraction Coupled to Miniaturized Liquid Chromatography: A Critical Review. Molecules 2020, 25, 2460. DOI: 10.3390/molecules25102460.
  • Kataoka, H. In-Tube Solid-Phase Microextraction: Current Trends and Future Perspectives. J. Chromatogr. A 2021, 1636, 461787. DOI: 10.1016/j.chroma.2020.461787.
  • Xu, L.; Hu, Z.-S.; Duan, R.; Wang, X.; Yang, Y.-S.; Dong, L.-Y.; Wang, X.-H. Advances and Applications of in-Tube Solid-Phase Microextraction for Analysis of Proteins. J. Chromatogr. A 2021, 1640, 461962. DOI: 10.1016/j.chroma.2021.461962.
  • da Silva, L. F.; Medina, D. A. V.; Lanças, F. M. Automated Needle-Sleeve Based Online Hyphenation of Solid-Phase Microextraction and Liquid Chromatography. Talanta 2021, 221, 121608. DOI: 10.1016/j.talanta.2020.121608.
  • Grandy, J. J.; Galpin, V.; Singh, V.; Pawliszyn, J. Development of a Drone-Based Thin-Film Solid-Phase Microextraction Water Sampler to Facilitate on-Site Screening of Environmental Pollutants. Anal. Chem. 2020, 92, 12917–12924. DOI: 10.1021/acs.analchem.0c01490.
  • Wieczorek, M. N.; Zhou, W.; Pawliszyn, J. Sequential Thin Film-Solid Phase Microextraction as a New Strategy for Addressing Displacement and Saturation Effects in Food Analysis. Food Chem. 2022, 389, 133038. DOI: 10.1016/j.foodchem.2022.133038.
  • Cárdenas-Soracá, D. M.; Singh, V.; Nazdrajić, E.; Vasiljević, T.; Grandy, J. J.; Pawliszyn, J. Development of Thin-Film Solid-Phase Microextraction Coating and Method for Determination of Artificial Sweeteners in Surface Waters. Talanta 2020, 211, 120714. DOI: 10.1016/j.talanta.2020.120714.
  • Emmons, R. V.; Tajali, R.; Gionfriddo, E. Development, Optimization and Applications of Thin Film Solid Phase Microextraction (TF-SPME) Devices for Thermal Desorption: A Comprehensive Review. Separations 2019, 6, 39. DOI: 10.3390/separations6030039.
  • Muratuly, A.; Kapar, A.; Kenessov, B. Modeling Headspace Solid-Phase Microextraction of Volatile Organic Compounds from Water Samples with Porous Coatings Using Finite Element Analysis. Adv. Sample Preparat. 2022, 3, 100030. DOI: 10.1016/j.sampre.2022.100030.
  • Sereshti, H.; Duman, O.; Tunç, S.; Nouri, N.; Khorram, P. Nanosorbent-Based Solid Phase Microextraction Techniques for the Monitoring of Emerging Organic Contaminants in Water and Wastewater Samples. Microchim. Acta 2020, 187, 1–35. DOI: 10.1007/s00604-020-04527-w.
  • Seidi, S.; Tajik, M.; Baharfar, M.; Rezazadeh, M. Micro Solid-Phase Extraction (Pipette Tip and Spin Column) and Thin Film Solid-Phase Microextraction: Miniaturized Concepts for Chromatographic Analysis. TrAC, Trends Anal. Chem. 2019, 118, 810–827. DOI: 10.1016/j.trac.2019.06.036.
  • Ghorbani, M.; Aghamohammadhassan, M.; Chamsaz, M.; Akhlaghi, H.; Pedramrad, T. Dispersive Solid Phase Microextraction. TrAC, Trends Anal. Chem. 2019, 118, 793–809. DOI: 10.1016/j.trac.2019.07.012.
  • Abdelhameed, R.; Hammad, S. F.; Abdallah, I. A.; Bedair, A.; Locatelli, M.; Mansour, F. R. A Hybrid Microcrystalline Cellulose/Metal-Organic Framework for Dispersive Solid Phase Microextraction of Selected Pharmaceuticals: A Proof-of-Concept. J. Pharm. Biomed. Anal. 2023, 235, 115609. DOI: 10.1016/j.jpba.2023.115609.
  • Asfaram, A.; Ghaedi, M.; Goudarzi, A. Optimization of Ultrasound-Assisted Dispersive Solid-Phase Microextraction Based on Nanoparticles Followed by Spectrophotometry for the Simultaneous Determination of Dyes Using Experimental Design. Ultrason. Sonochem. 2016, 32, 407–417. DOI: 10.1016/j.ultsonch.2016.04.009.
  • Li, W.; Qiu, J.; Baharinikoo, L.; Kumar, T. C. A.; Al-Qargholi, B.; Shafik, S. S.; Abbass, R.; Saraswat, S. K. Dispersive Solid Phase Microextraction Based on Magnesium Oxide Nanoparticles for Preconcentration of Auramine O and Methylene Blue from Water Samples. Sci. Rep. 2022, 12, 12806. DOI: 10.1038/s41598-022-16948-z.
  • Khezeli, T.; Daneshfar, A. Vortex-Assisted Dispersive Solid-Phase Microextraction of Ondansetron and Domperidone Using Carbonized Cockle Shell Modified with Nitrogen and Sulfur-Doped Carbon Dots as a Bio-Based Sorbent. J. Sep. Sci. 2022, 45, 3501–3509. DOI: 10.1002/jssc.202200248.
  • Li, W-k.; Xue, Y-j.; Fu, X-y.; Ma, Z-q.; Feng, J-t Covalent Organic Framework Reinforced Hollow Fiber for Solid-Phase Microextraction and Determination of Pesticides in Foods. Food Control 2022, 133, 108587. DOI: 10.1016/j.foodcont.2021.108587.
  • Darvishnejad, F.; Raoof, J. B.; Ghani, M.; Ojani, R. Keggin Type Phosphotungstic Acid Intercalated Copper-Chromium-Layered Double Hydroxide Reinforced Porous Hollow Fiber as a Sorbent for Hollow Fiber Solid Phase Microextraction of Selected Chlorophenols besides Their Quantification via High Performance Liquid Chromatography. J. Chromatogr. A 2023, 1697, 463993. DOI: 10.1016/j.chroma.2023.463993.
  • Yazdi, M. N.; Yamini, Y.; Asiabi, H. Fabrication of Polypyrrole-Silver Nanocomposite for Hollow Fiber Solid Phase Microextraction Followed by HPLC/UV Analysis for Determination of Parabens in Water and Beverages Samples. J. Food Compos. Anal. 2018, 74, 18–26. DOI: 10.1016/j.jfca.2018.08.006.
  • Mei, M.; Huang, X.; Luo, Q.; Yuan, D. Magnetism-Enhanced Monolith-Based in-Tube Solid Phase Microextraction. Anal. Chem. 2016, 88, 1900–1907. DOI: 10.1021/acs.analchem.5b04328.
  • Cruz, J. C.; Rosa, M. A.; Morés, L.; Carasek, E.; Crippa, J. A. d S.; Figueiredo, E. C.; Queiroz, M. E. C. Magnetic Restricted-Access Carbon Nanotubes for SPME to Determine Cannabinoids in Plasma Samples by UHPLC-MS/MS. Anal. Chim. Acta. 2022, 1226, 340160. DOI: 10.1016/j.aca.2022.340160.
  • Safari, M.; Yamini, Y. Application of Magnetic Nanomaterials in Magnetic in-Tube Solid-Phase Microextraction. Talanta 2021, 221, 121648. DOI: 10.1016/j.talanta.2020.121648.
  • Jinadasa, B.; Monteau, F.; Morais, S. Critical Review of Micro-Extraction Techniques Used in the Determination of Polycyclic Aromatic Hydrocarbons in Biological, Environmental and Food Samples. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2020, 37, 1004–1026. DOI: 10.1080/19440049.2020.1733103.
  • Heidari, N.; Ghiasvand, A. A Review on Magnetic Field-Assisted Solid-Phase Microextraction Techniques. J. Liq. Chromatogr. Related Technol. 2020, 43, 75–82. DOI: 10.1080/10826076.2019.1668804.
  • Qi, L.; Wang, Z.; Chen, J.; Xie, J.-W. Development and Validation of a QuEChERS-HPLC-DAD Method Using Polymer-Functionalized Melamine Sponges for the Analysis of Antipsychotic Drugs in Milk. Food Chem. 2024, 444, 138553. DOI: 10.1016/j.foodchem.2024.138553.
  • Moosavi, N. S.; Yamini, Y.; Osooli, P. Investigating the Drug Abuse in Hair Samples with Electrospun Nanostructure PEDOT-CNT along with EA-IT-SPME. New J. Chem. 2024, 48, 7277–7286. DOI: 10.1039/D4NJ00023D.
  • Jain, B.; Jain, R.; Nowak, P. M.; Ali, N.; Ansari, M. N.; Kabir, A.; Chandravanshi, L. P.; Sharma, S. Comparison of Various Sample Preparation Methods for Benzodiazepines in Terms of the Principles of White Analytical Chemistry. TrAC, Trends Anal. Chem. 2024, 171, 117524. DOI: 10.1016/j.trac.2024.117524.
  • AbuArrah, M.; Setianto, B. Y.; Faisal, A.; Sadewa, A. H. 8-Hydroxy-2-Deoxyguanosine as Oxidative DNA Damage Biomarker of Medical Ionizing Radiation: A Scoping Review. J. Biomed. Phys. Eng. 2021, 11, 389.
  • Al-Hashimi, N. N.; Shahin, R. O.; El-Sheikh, A. H.; Jibreel, M. J.; Alsakhen, N. A.; Alqudah, A. M.; Oqal, M. K.; Abdelghani, J. I. A New Approach for Determination of Urinary 8-Hydroxy-2′-Deoxyguanosine in Cancer Patients Using Reinforced Solid/Liquid Phase Microextraction Combined with HPLC-DAD. AChrom. 2023. DOI: 10.1556/1326.2023.01142.
  • Guo, L.; Wang, M-m.; He, M.; Qiu, F-r.; Jiang, J. Simultaneous Determination of Ezetimibe and Its Glucuronide Metabolite in Human Plasma by Solid Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 986-987, 108–114. DOI: 10.1016/j.jchromb.2015.02.012.
  • Ramesh, B.; Manjula, N.; Bijargi, S.; Sarma, V.; Devi, P. S. Comparison of Conventional and Supported Liquid Extraction Methods for the Determination of Sitagliptin and Simvastatin in Rat Plasma by LC–ESI–MS/MS. J. Pharm. Anal. 2015, 5, 161–168. DOI: 10.1016/j.jpha.2014.11.003.
  • AL-Hashimi, N. N.; Shahin, R. O.; AL-Hashimi, A. N.; Al Ajeal, A. M.; Tahtamouni, L. H.; Basheer, C. - Cetyl-Alcohol-Reinforced Hollow Fiber Solid/Liquid-Phase Microextraction and HPLC–DAD Analysis of Ezetimibe and Simvastatin in Human Plasma and Urine. Biomed. Chromatogr. 2019, 33, e4410. DOI: 10.1002/bmc.4410.
  • de Carvalho Abrão, L. C.; Figueiredo, E. C. A New Restricted Access Molecularly Imprinted Fiber for Direct Solid Phase Microextraction of Benzodiazepines from Plasma Samples. Analyst 2019, 144, 4320–4330. DOI: 10.1039/c9an00444k.
  • Song, X.; Meng, X.; Chen, M.; Wang, L.; Li, X.; Huang, X. Online Measurement of Tetraethyllead in Aqueous Samples Utilizing Monolith-Based Magnetism-Enhanced in-Tube Solid Phase Microextraction Coupled with Chromatographic Analysis. J. Chromatogr. A 2023, 1700, 464040. DOI: 10.1016/j.chroma.2023.464040.
  • Lekota, M. W.; Dimpe, K. M.; Nomngongo, P. N. MgO-ZnO/Carbon Nanofiber Nanocomposite as an Adsorbent for Ultrasound-Assisted Dispersive Solid-Phase Microextraction of Carbamazepine from Wastewater Prior to High-Performance Liquid Chromatographic Detection. J. Anal. Sci. Technol. 2019, 10, 1–12. DOI: 10.1186/s40543-019-0185-1.
  • He, H.; Zhuang, Y.; Peng, Y.; Gao, Z.; Yang, S.; Sun, C. Solid-Phase Microextraction Based on Polyaniline Doped with Perfluorooctanesulfonic Acid Coupled to HPLC for the Quantitative Determination of Chlorophenols in Water Samples. J. Sep. Sci. 2014, 37, 427–433. DOI: 10.1002/jssc.201300788.
  • Alampanos, V. D.; Lambropoulou, D. A. Hydrogel Sorbent-Based Sample Preparation Processes as Green Alternatives for the Extraction of Organic Contaminants Followed by Chromatographic Analysis. TrAC, Trends Anal. Chem. 2024, 174, 117687. DOI: 10.1016/j.trac.2024.117687.
  • Bechis G, Mastellone G, Marengo A, Sgorbini B, Rubiolo P, Cagliero CL. Harnessing the Potential of Natural Compounds through DES-Based DLLME to Make Greener Fragrance Analysis: A Case Study with High Water Content Samples. Book of Abstract 2023, 275–275.
  • Ueda, J. M.; Griebler, K. R.; Finimundy, T. C.; Rodrigues, D. B.; Veríssimo, L.; Pires, T. C. S. P.; Gonçalves, J.; Fernandes, I. P.; Pereira, E.; Barros, L.; et al. Polyphenol Composition by HPLC-DAD-(ESI-) MS/MS and Bioactivities of Extracts from Grape Agri-Food Wastes. Molecules 2023, 28, 7368. DOI: 10.3390/molecules28217368.
  • Lazăr, N.-N.; Râpeanu, G.; Iticescu, C. Mitigating Eggplant Processing Waste’s Environmental Impact through Functional Food Developing. Trends Food Sci. Technol. 2024, 147, 104414. DOI: 10.1016/j.tifs.2024.104414.
  • Lombardi, F.; Fiasca, F.; Minelli, M.; Maio, D.; Mattei, A.; Vergallo, I.; Cifone, M. G.; Cinque, B.; Minelli, M. The Effects of Low-Nickel Diet Combined with Oral Administration of Selected Probiotics on Patients with Systemic Nickel Allergy Syndrome (SNAS) and Gut Dysbiosis. Nutrients 2020, 12, 1040. DOI: 10.3390/nu12041040.
  • Song, X.; Pang, J.; Wu, Y.; Huang, X. Development of Magnetism-Reinforced in-Tube Solid Phase Microextraction Combined with HPLC for the Sensitive Quantification of Cobalt (II) and Nickel (II) in Environmental Waters. Microchem. J. 2020, 159, 105370. DOI: 10.1016/j.microc.2020.105370.
  • Guo, H.; Zhou, X.; Zhang, Y.; Yao, Q.; Qian, Y.; Chu, H.; Chen, J. Carbamazepine Degradation by Heterogeneous Activation of Peroxymonosulfate with Lanthanum Cobaltite Perovskite: Performance, Mechanism and Toxicity. J. Environ. Sci. (China) 2020, 91, 10–21. DOI: 10.1016/j.jes.2020.01.003.
  • Waleng, N. J.; Selahle, S. K.; Mpupa, A.; Nomngongo, P. N. Development of Dispersive Solid-Phase Microextraction Coupled with High-Pressure Liquid Chromatography for the Preconcentration and Determination of the Selected Neonicotinoid Insecticides. J. Anal. Sci. Technol. 2022, 13, 1–15. DOI: 10.1186/s40543-021-00311-4.
  • Abughrin, S. E.; Alshana, U.; Bakirdere, S. Magnetic Nanoparticle-Based Dispersive Solid-Phase Microextraction of Three UV Blockers Prior to Their Determination by HPLC-DAD. Int. J. Environ. Res. Public Health. 2022, 19, 6037. DOI: 10.3390/ijerph19106037.
  • Heine, S.; Schild, F.; Schmitt, W.; Krebber, R.; Görlitz, G.; Preuss, T. G. A Toxicokinetic and Toxicodynamic Modeling Approach Using Myriophyllum Spicatum to Predict Effects Caused by Short-Term Exposure to a Sulfonylurea. Environ. Toxicol. Chem. 2016, 35, 376–384. DOI: 10.1002/etc.3153.
  • Pang, J.; Song, X.; Huang, X.; Yuan, D. Porous Monolith-Based Magnetism-Reinforced in-Tube Solid Phase Microextraction of Sulfonylurea Herbicides in Water and Soil Samples. J. Chromatogr. A 2020, 1613, 460672. DOI: 10.1016/j.chroma.2019.460672.
  • Wang, C.-H.; Ma, X.-X.; Wang, C.; Wu, Q.-H.; Wang, Z. Poly (Vinylidene Fluoride) Membrane Based Thin Film Microextraction for Enrichment of Benzoylurea Insecticides from Water Samples Followed by Their Determination with HPLC. Chin. Chem. Lett. 2014, 25, 1625–1629. DOI: 10.1016/j.cclet.2014.06.018.
  • Mei, M.; Huang, X. Online Analysis of Five Organic Ultraviolet Filters in Environmental Water Samples Using Magnetism-Enhanced Monolith-Based in-Tube Solid Phase Microextraction Coupled with High-Performance Liquid Chromatography. J. Chromatogr. A 2017, 1525, 1–9. DOI: 10.1016/j.chroma.2017.09.065.
  • Mazuryk, J.; Klepacka, K.; Kutner, W.; Sharma, P. S. Glyphosate Separating and Sensing for Precision Agriculture and Environmental Protection in the Era of Smart Materials. Environ. Sci. Technol. 2023, 57, 9898–9924. DOI: 10.1021/acs.est.3c01269.
  • Khafi, M.; Javadi, A.; Mogaddam, M. R. A. Combination of Three-Phase Extraction with Deep Eutectic Solvent-Based Dispersive Liquid–Liquid Microextraction for the Extraction of Some Antibiotics from Egg Samples Prior to HPLC-DAD. Microchem. J. 2023, 190, 108652. DOI: 10.1016/j.microc.2023.108652.
  • Li, J. Y.; Ma, Y. J.; Xiao, F.; Xu, X. B. Bubble-Driven Solid-Phase Microextraction for the Rapid Determination of Potassium Sorbate in Oyster Sauce by HPLC-DAD. Int. J. of Food Sci. Tech. 2024, 59, 2689–2696. DOI: 10.1111/ijfs.17018.
  • Chen, L.; Li, X.; Li, Z.; Deng, L. Analysis of 17 Elements in Cow, Goat, Buffalo, Yak, and Camel Milk by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). RSC Adv. 2020, 10, 6736–6742. DOI: 10.1039/d0ra00390e.
  • Wu, J.; Lu, G.; Huang, X. Fabrication of Monolith-Based Solid-Phase Microextraction for Effective Extraction of Total Chromium in Milk and Tea Samples Prior to HPLC/DAD Analysis. Microchem. J. 2020, 159, 105549. DOI: 10.1016/j.microc.2020.105549.
  • Agcam, E.; Akyıldız, A.; Evrendilek, G. A. Comparison of Phenolic Compounds of Orange Juice Processed by Pulsed Electric Fields (PEF) and Conventional Thermal Pasteurisation. Food Chem. 2014, 143, 354–361. DOI: 10.1016/j.foodchem.2013.07.115.
  • Tashakkori, P.; Tağaç, A. A.; Merdivan, M. Fabrication of Montmorillonite/Ionic Liquid Composite Coated Solid-Phase Microextraction Fibers for Determination of Phenolic Compounds in Fruit Juices by Gas Chromatography and Liquid Chromatography. J. Chromatogr. A 2021, 1635, 461741. DOI: 10.1016/j.chroma.2020.461741.
  • Bordagaray, A.; García-Arrona, R.; Millán, E. Development and Application of a Screening Method for Triazole Fungicide Determination in Liquid and Fruit Samples Using Solid-Phase Microextraction and HPLC-DAD. Anal. Methods 2013, 5, 2565–2571. DOI: 10.1039/c3ay26433e.
  • Melo, A.; Aguiar, A.; Mansilha, C.; Pinho, O.; Ferreira, I. M. Optimisation of a Solid-Phase Microextraction/HPLC/Diode Array Method for Multiple Pesticide Screening in Lettuce. Food Chem. 2012, 130, 1090–1097. DOI: 10.1016/j.foodchem.2011.07.137.
  • Zhang, Y.; Huang, X.; Yuan, D. Determination of Benzimidazole Anthelmintics in Milk and Honey by Monolithic Fiber-Based Solid-Phase Microextraction Combined with High-Performance Liquid Chromatography–Diode Array Detection. Anal. Bioanal. Chem. 2015, 407, 557–567. DOI: 10.1007/s00216-014-8284-8.
  • Ji, X.; Feng, J.; Li, C.; Han, S.; Sun, M.; Feng, J.; Sun, H.; Fan, J.; Guo, W. Corncob Biochar as a Coating for Trace Analysis of Polycyclic Aromatic Hydrocarbons in Water Samples by Online in-Tube Solid-Phase Microextraction Coupled to High Performance Liquid Chromatography. Microchem. J. 2020, 159, 105399. DOI: 10.1016/j.microc.2020.105399.
  • Pena-Pereira, F.; Lavilla, I.; Bendicho, C.; Vidal, L.; Canals, A. Speciation of Mercury by Ionic Liquid-Based Single-Drop Microextraction Combined with High-Performance Liquid Chromatography-Photodiode Array Detection. Talanta 2009, 78, 537–541. DOI: 10.1016/j.talanta.2008.12.003.
  • Song, X.; Wu, J.; Pang, J.; Wu, Y.; Huang, X. Task Specific Monolith for Magnetic Field-Reinforced in-Tube Solid Phase Microextraction of Mercury Species in Waters Prior to Online HPLC Quantification. J. Hazard. Mater. 2021, 411, 125141. DOI: 10.1016/j.jhazmat.2021.125141.
  • Panda, S. S.; Panda, B. P.; Nayak, S. K.; Mohanty, S. A Review on Waterborne Thermosetting Polyurethane Coatings Based on Castor Oil: synthesis, Characterization, and Application. Poly. Plastics Technol. En. 2018, 57, 500–522. DOI: 10.1080/03602559.2016.1275681.
  • Sun, M.; Bu, Y.; Xin, X.; Feng, J. Polyurethane Functionalized Silica Aerogel for in-Tube Solid-Phase Microextraction of Estrogens Prior to High Performance Liquid Chromatography Detection. Microchem. J. 2022, 181, 107699. DOI: 10.1016/j.microc.2022.107699.
  • Wang, L.; Zhang, Z.; Xu, X.; Zhang, D.; Wang, F.; Zhang, L. Simultaneous Determination of Four Trace Level Endocrine Disrupting Compounds in Environmental Samples by Solid-Phase Microextraction Coupled with HPLC. Talanta 2015, 142, 97–103. DOI: 10.1016/j.talanta.2015.04.043.
  • Pang, J.; Yuan, D.; Huang, X. On-Line Combining Monolith-Based in-Tube Solid Phase Microextraction and High-Performance Liquid Chromatography-Fluorescence Detection for the Sensitive Monitoring of Polycyclic Aromatic Hydrocarbons in Complex Samples. J. Chromatogr. A 2018, 1571, 29–37. DOI: 10.1016/j.chroma.2018.07.077.
  • Zhang, F.; Zhang, G.; Liao, X. Negative Role of Biochars in the Dissipation and Vegetable Uptake of Polycyclic Aromatic Hydrocarbons (PAHs) in an Agricultural Soil: Cautions for Application of Biochars to Remediate PAHs-Contaminated Soil. Ecotoxicol. Environ. Saf. 2021, 213, 112075. DOI: 10.1016/j.ecoenv.2021.112075.
  • Sun, M.; Wang, X.; Ding, Y.; Feng, J. Titania Hybridized Melamine–Formaldehyde Aerogel for Online in-Tube Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons Prior to HPLC–DAD. Mikrochim. Acta. 2022, 189, 456. DOI: 10.1007/s00604-022-05572-3.
  • Petrović, S.; Arsić, B.; Zlatanović, I.; Milićević, J.; Glišić, S.; Mitić, M.; Đurović-Pejčev, R.; Stojanović, G. In Silico Investigation of Selected Pesticides and Their Determination in Agricultural Products Using QuEChERS Methodology and HPLC-DAD. Int. J. Mol. Sci. 2023, 24, 8003. DOI: 10.3390/ijms24098003.
  • Díaz-Corona, L. R.; Parra-Saavedra, K. J.; Mora-Alonzo, R. S.; Macías-Rodríguez, M. E.; Martínez-Preciado, A. H.; Guevara-Martínez, S. J.; Zamudio-Ojeda, A.; Macias-Lamas, A. M. HPLC-DAD Development and Validation Method for Short-Chain Fatty Acids Quantification from Chicken Feces by Solid-Phase Extraction. Separations 2023, 10, 308. DOI: 10.3390/separations10050308.
  • Rahimmalek, M.; Szumny, A.; Gharibi, S.; Pachura, N.; Miroliaei, M.; Łyczko, J. Chemical Investigations in Kelussia Odoratissima Mozaff. Leaves Based on Comprehensive Analytical Methods: LC-MS, SPME, and GC-MS Analyses. Molecules 2023, 28, 6140. DOI: 10.3390/molecules28166140.
  • Borsatto, J. V.; Maciel, E. V.; Cifuentes, A.; Lanças, F. M. Online Extraction Followed by LC-MS/MS Analysis of Lipids in Natural Samples: A Proof-of-Concept Profiling Lecithin in Seeds. Foods 2023, 12, 281. DOI: 10.3390/foods12020281.
  • Kardani, F.; Khezeli, T.; Shariati, S.; Hashemi, M.; Mahdavinia, M.; Jelyani, A. Z.; Rashedinia, M.; Noori, S. M. A.; Karimvand, M. N.; Ramezankhani, R. Application of Novel Metal-Organic Framework-Deep Eutectic Solvent/Molecularly Imprinted Polymer Multiple Monolithic Fiber for Solid Phase Microextraction of Amphetamines and Modafinil in Unauthorized Medicinal Supplements with GC-MS. J. Pharm. Biomed. Anal. 2024, 242, 116005. DOI: 10.1016/j.jpba.2024.116005.
  • Love, D.; Jones, N. S. Interpol Review of Drug Analysis 2019-2022. Forensic Sci. Int: Synergy 2023, 6, 100299. DOI: 10.1016/j.fsisyn.2022.100299.
  • Ramzan, M.; Raza, A.; Un Nisa, Z.; Musharraf, S. G. Recent Studies on Advance Spectroscopic Techniques for the Identification of Microorganisms: A Review. Arabian J. Chem. 2023, 16, 104521. DOI: 10.1016/j.arabjc.2022.104521.
  • Zhou, W.; Nazdrajić, E.; Pawliszyn, J. High-Throughput and Rapid Screening of Drugs of Abuse in Saliva by Multi-Segment Injection Using Solid-Phase Microextraction-Automated Microfluidic Open Interface-Mass Spectrometry. Anal. Chem. 2023, 95, 6367–6373. DOI: 10.1021/acs.analchem.2c05782.
  • Mangombo, Z. A.; Mthembi, M.; Maleke, A.; Modise, P. Detection and identification of 3, 4-methylenedioxymethcathinone (methylone) using gc-ms, lc-(tof) ms, atr-ftir and ft-raman in the forensic science laboratory in South Africa. Dual second dimension columndual detection in two- dimensional comprehensive gas chromatography (gc× 2gc-ms/fid): increased information in optimized separation conditions in metabolomics. 2023:236.
  • Xie, Y.; Zhang, L.; Hou, W.; Cheng, Y.; Luo, F.; Liu, Z.; Zhang, Z. A Novel Method for Monitoring N-Nitrosamines Impurities Using NH2-MIL-101 (Fe) Mediated Dispersive Micro-Solid Phase Extraction Coupled with LC-MS/MS in Biopharmaceuticals. J. Pharm. Sci. 2023, 112, 2783–2789. DOI: 10.1016/j.xphs.2023.07.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.