125
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Low-density lipoprotein decorated and indocyanine green loaded silica nanoparticles for tumor-targeted photothermal therapy of breast cancer

, , &
Pages 308-315 | Received 07 Apr 2019, Accepted 22 Oct 2019, Published online: 10 Dec 2019

References

  • Ao M, Xiao X, Ao Y. 2018. Low density lipoprotein modified silica nanoparticles loaded with docetaxel and thalidomide for effective chemotherapy of liver cancer. Braz J Med Biol Res. 51:1–10.
  • Cao Y, Song J, Ge J, Song Z, Chen J, Wu C. 2018. MicroRNA-100 suppresses human gastric cancer cell proliferation by targeting CXCR7. Oncol Lett. 15:453–458.
  • Chai S, Kan S, Sun R, Zhou R, Sun Y, Chen W, Yu B. 2018. Fabricating polydopamine-coated MoSe2-wrapped hollow mesoporous silica nanoplatform for controlled drug release and chemo-photothermal therapy. Int J Nanomedicine. 13:7607–7621.
  • Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. 2016. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun. 7:13193.
  • Chen L, He W, Jiang H, Wu L, Xiong W, Li B, Zhou Z, Qian Y. 2018. In vivo SELEX of bone targeting aptamer in prostate cancer bone metastasis model. Int J Nanomedicine. 14:149–159.
  • Chen WL, Yang SD, Li F, Qu CX, Liu Y, Wang Y, Wang DD, Zhang XN. 2018. Programmed pH/reduction-responsive nanoparticles for efficient delivery of antitumor agents in vivo. Acta Biomater. 81:219–230.
  • Cong VT, Ly NH, Son SJ, Min J, Joo SW. 2017. Silica-encapsulated gold nanoparticle dimers for organelle-targeted cellular delivery. Chem Commun. 53:5009–5012.
  • Ding X, Xu X, Zhao Y, Zhang L, Yu Y, Huang F, Yin D, Huang H. 2017. Tumor targeted nanostructured lipid carrier co-delivering paclitaxel and indocyanine green for laser triggered synergetic therapy of cancer. RSC Adv. 7:35086–35095.
  • Fang J, Zhang S, Xue X, Zhu X, Song S, Wang B, Jiang L, Qin M, Liang H, Gao L, et al. 2018. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int J Nanomedicine. 13:5113–5126.
  • Fang RH, Hu CMJ, Luk BT, Gao W, Copp JA, Tai Y, O’Connor DE, Zhang L. 2014. Cancer cell membrane-coated nanoparticles for anticancervaccination and drug delivery. Nano Lett. 14:2181–2188.
  • Furuya Y, Sekine Y, Kato H, Miyazawa Y, Koike H, Suzuki K. 2016. Low-density lipoprotein receptors play an important role in the inhibition of prostate cancer cell proliferation by statins. Prostate Int. 4:56.
  • Gu L, Shi T, Sun Y, You C, Wang S, Wen G, Chen L, Zhang X, Zhu J, Sun B, et al. 2017. Folate-modified, indocyanine green-loaded lipid-polymer hybrid nanoparticles for targeted delivery of cisplatin. J Biomater Sci Polym Ed. 28:690–702.
  • Hu CMJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. 2011. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA. 108:10980–10985.
  • Kovanen PT, Bilheimer DW, Goldstein JL, Jaramillo JJ, Brown MS. 1981. Regulatory role for hepatic low density lipoprotein receptors in vivo in the dog. Proc Natl Acad Sci USA. 78:1194–1198.
  • Lu Q, Yi M, Zhang M, Shi Z, Zhang S. 2019. Folate-conjugated cell membrane mimetic polymer micelles for tumor cell-targeted delivery of doxorubicin. Langmuir. 35:504–512.
  • Martinez-Carmona M, Lozano D, Colilla M, Vallet-Regi M. 2018. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater. 65:393–404.
  • Meng LX, Ren Q, Meng Q, Zheng YX, He ML, Sun SY, Ding ZJ, Li BC, Wang HY. 2018. Trastuzumab modified silica nanoparticles loaded with doxorubicin for targeted and synergic therapy of breast cancer. Artif Cells Nanomed Biotechnol. 46:S556–S563.
  • Nikanjam M, Blakely EA, Bjornstad KA, Shu X, Budinger TF, Forte TM. 2007. Synthetic nano-low density lipoprotein as targeted drug delivery vehicle for glioblastoma multiforme. Int J Pharm. 328:86–94.
  • Rudling MJ, Ståhle L, Peterson CO, Skoog L. 1986. Content of low density lipoprotein receptors in breast cancer tissue related to survival of patients. Br Med J. 292:580–582.
  • Saxena V, Sadoqi M, Shao J. 2004. Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems. J Photochem Photobiol B Biol. 74:29–38.
  • Sheng Y, Chang L, Kuang T, Hu J. 2016. PEG/heparin-decorated lipid–polymer hybrid nanoparticles for long-circulating drug delivery. Rsc Adv. 6:23279–23287.
  • Stopeck AT, Nicholson AC, Mancini FP, Hajjar DP. 1993. Cytokine regulation of low density lipoprotein receptor gene transcription in HepG2 cells. J Biol Chem. 268:17489–17494.
  • Tambe P, Kumar P, Paknikar KM, Gajbhiye V. 2018. Decapeptide functionalized targeted mesoporous silica nanoparticles with doxorubicin exhibit enhanced apoptotic effect in breast and prostate cancer cells. Int J Nanomedicine. 13:7669–7680.
  • Tang D, Zhao X, Yang T, Wang C. 2018. Paclitaxel prodrug based mixed micelles for tumor-targeted chemotherapy. RSC Adv. 8:380–389.
  • Tang D, Zhao X, Zhang L, Wang Z, Wang C. 2019. Identification of hub genes to regulate breast cancer metastasis to brain by bioinformatics analyses. J Cell Biochem. 120:9522–9531.
  • Uppal S, Italiya KS, Chitkara D, Mittal A. 2018. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: an emerging paradigm for effective therapy. Acta Biomater. 81:20–42.
  • Wang C, Chen S, Yu Q, Hu F, Yuan H. 2017. Taking advantage of the disadvantage: employing the high aqueous instability of amorphous calcium carbonate to realize burst drug release within cancer cells. J Mater Chem B. 5:2068–2073.
  • Wang C, Han M, Liu X, Chen S, Hu F, Sun J, Yuan H. 2019. Mitoxantrone-preloaded water-responsive phospholipid-amorphous calcium carbonate hybrid nanoparticles for targeted and effective cancer therapy. Int J Nanomedicine. 14:1503–1517.
  • Wang C, Liu X, Chen S, Hu F, Sun J, Yuan H. 2018. Facile preparation of phospholipid–amorphous calcium carbonate hybrid nanoparticles: toward controllable burst drug release and enhanced tumor penetration. Chem Commun. 54:13080–13083.
  • Wang C, Wang Z, Zhao X, Yu F, Quan Y, Cheng Y, Yuan H. 2019. DOX loaded aggregation-induced emission active polymeric nanoparticles as a fluorescence resonance energy transfer traceable drug delivery system for self-indicating cancer therapy. Acta Biomater. 85:218–228.
  • Wang C, Yu F, Liu X, Chen S, Wu R, Zhao R, Hu F, Yuan H. 2019. Cancer-specific therapy by artificial modulation of intracellular calcium concentration. Adv Healthcare Mater. 8:1900501.
  • Wang JY, Mu X, Li Y, Xu F, Long W, Yang J, Bian P, Chen J, Ouyang L, Liu H. 2018. Hollow PtPdRh nanocubes with enhanced catalytic activities for in vivo clearance of radiation‐induced ROS via surface‐mediated bond breaking. Small. 14:1703736.
  • Wang S, Liu F, Li XL. 2017. Monitoring of “on-demand” drug release using dual tumor marker mediated DNA-capped versatile mesoporous silica nanoparticles. Chem Commun. 53:8755–8758.
  • Wu L, Ni C, Zhang L, Shi G, Bai X, Zhou Y, He F. 2016. Surface charge convertible and biodegradable synthetic zwitterionic nanoparticles for enhancing cellular drug uptake. Macromol Biosci. 16:308–313.
  • Xiang SD, Wilson KL, Goubier A, Heyerick A, Plebanski M. 2018. Design of peptide-based nanovaccines targeting leading antigens from gynecological cancers to induce HLA-A2.1 restricted CD8(+) T cell responses. Front Immunol. 9:2968.
  • Xiong H, Du S, Zhang P, Jiang Z, Zhou J, Yao J. 2018. Primary tumor and pre-metastatic niches co-targeting “peptides-lego” hybrid hydroxyapatite nanoparticles for metastatic breast cancer treatment. Biomater Sci. 6:2591–2604.
  • Xiong H, Ni J, Jiang Z, Tian F, Zhou J, Yao J. 2018. Intracellular self-disassemble polysaccharide nanoassembly for multi-factors tumor drug resistance modulation of doxorubicin. Biomater Sci. 6:2527–2540.
  • Xiong H, Wu Y, Jiang Z, Zhou J, Yang M, Yao J. 2019. pH-activatable polymeric nanodrugs enhanced tumor chemo/antiangiogenic combination therapy through improving targeting drug release. J Colloid Interface Sci. 536:135–148.
  • Yang RM, Fu C, Fang J, Xu X, Wei X, Tang W, Jiang X, Zhang L. 2016. Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermal therapy. Int J Nanomedicine. 12:197–206.
  • Ye J, Zhang R, Chai W, Du X. 2018. Low-density lipoprotein decorated silica nanoparticles co-delivering sorafenib and doxorubicin for effective treatment of hepatocellular carcinoma. Drug Deliv. 25:2007–2014.
  • Zhang L, Qin D, Hao C, Shu X, Pei D. 2013. SNX16 negatively regulates the migration and tumorigenesis of MCF-7 cells. Cell Regen. 2:2:3.
  • Zhang N, Tao J, Hua H, Sun P, Zhao Y. 2015. Low-density lipoprotein peptide-combined DNA nanocomplex as an efficient anticancer drug delivery vehicle. Eur J Pharm Biopharm. 94:20.
  • Zhang Y, Liu L, Lin L, Chen J, Tian H, Chen X, Maruyama A. 2018. In situ dual-crosslinked nanoparticles for tumor targeting gene delivery. Acta Biomater. 65:349–362.
  • Zhao X, Tang D, Yang T, Wang C. 2018. Facile preparation of biocompatible nanostructured lipid carrier with ultra-small size as a tumor-penetration delivery system. Colloids Surf B Biointerfaces. 170:355–363.
  • Zhao X, Tang DY, Zuo X, Zhang TD, Wang C. 2019. Identification of lncRNA–miRNA–mRNA regulatory network associated with epithelial ovarian cancer cisplatin-resistant. J Cell Physiol. 234:19886–19894.
  • Zheng T, Li GG, Zhou F, Wu R, Zhu JJ, Wang H. 2016. Gold-nanosponge-based multistimuli-responsive drug vehicles for targeted chemo-photothermal therapy. Adv Mater. 28:8218–8226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.