490
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Voriconazole incorporated nanofiber formulations for topical application: preparation, characterization and antifungal activity studies against Candida species

, , , , , & show all
Pages 440-453 | Received 01 Jun 2018, Accepted 16 Dec 2019, Published online: 07 Jan 2020

References

  • Adams AIH, Bergold AM. 2005. Development and validation of a high performance liquid chromatographic method for the determination of voriconazole content in tablets. Chromatographia. 62:429–434.
  • Aguirre CV, Sintov AC. 2019. Microemulsions and nanoparticles as carriers for dermal and transdermal drug delivery. J Pharmacol Pharm Res. 2:1–12.
  • Alavarse AC, de Oliveira Silva FW, Colque JT, da Silva VM, Prieto T, Venancio EC, Bonvent JJ. 2017. Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Mater Sci Eng C. 77:271–281.
  • Arthanari S, Mani G, Jang JH, Choi JO, Cho YH, Lee JH, Cha SE, Oh HS, Kwon DH, Jang HT. 2016. Preparation and characterization of gatifloxacin-loaded alginate/poly (vinyl alcohol) electrospun nanofibers. Artif Cells Nanomed Biotechnol. 44:847–852.
  • Boncheva M, Damien F, Normand V. 2008. Molecular organization of the lipid matrix in intact Stratum corneum using ATR-FTIR spectroscopy. Biochim Biophys Acta. 1778:1344–1355.
  • [CLSI] Clinical and Laboratory Standards Institute. 1999. Methods for determining bactericidal activity of antimicrobial agents, approved guideline M26-A. Wayne (PA): CLSI.
  • [CLSI] Clinical and Laboratory Standards Institute. 2000. Reference method for broth dilution antifungal susceptability testing of yeasts; approved standard M27-A NCCLS. Wayne (PA): CLSI.
  • [CLSI] Clinical and Laboratory Standards Institute. 2014. Performance standards for antimicrobial susceptibility testing. Wayne (PA): CLSI.
  • Dash S, Murthy PN, Nath L, Chowdhury P. 2010. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 67:217–223.
  • Eksi F, Gayyurhan ED, Balci I. 2013. In vitro susceptibility of Candida species to four antifungal agents assessed by the reference broth microdilution method. Sci World J. 2013:1–6. Article ID 236903.
  • El-Hadidy GN, Ibrahim HK, Mohamed MI, El-Milligi MF. 2012. Microemulsions as vehicles for topical administration of voriconazole: formulation and in vitro evaluation. Drug Dev Ind Pharm. 38:64–72.
  • Erdal MS, Ozhan G, Mat MC, Ozsoy Y, Gungor S. 2016. Colloidal nanocarriers for the enhanced cutaneous delivery of naftifine: characterization studies and in vitro and in vivo evaluations. Int J Nanomedicine. 11:1027–1037.
  • Faisal W, Soliman GM, Hamdan AM. 2018. Enhanced skin deposition and delivery of voriconazole using ethosomal preparations. J Liposome Res. 28:14–21.
  • Fothergill AW, Sutton DA, McCarthy DI, Wiederhold NP. 2014. Impact of new antifungal breakpoints on antifungal resistance in Candida species. J Clin Microbiol. 52:994–997.
  • Fu R, Li C, Yu C, Xie H, Shi S, Li Z, Wang Q, Lu L. 2016. A novel electrospun membrane based on moxifloxacin hydrochloride/poly(vinyl alcohol)/sodium alginate for antibacterial wound dressings in practical application. Drug Deliv. 23:828–839.
  • Ge S, Lin Y, Lu H, Li Q, He J, Chen B, Wu C, Xu Y. 2014. Percutaneous delivery of econazole using microemulsion as vehicle: formulation, evaluation and vesicle-skin interaction. Int J Pharm. 465:120–131.
  • Gencturk A, Kahraman E, Gungor S, Ozhan G, Ozsoy Y, Sarac AS. 2017. Polyurethane/hydroxypropyl cellulose electrospun nanofiber mats as potential transdermal drug delivery system: characterization studies and in vitro assays. Artif Cells Nanomed Biotechnol. 45:655–664.
  • Goyal R, Macri LK, Kaplan HM, Kohn J. 2016. Nanoparticles and nanofibers for topical drug delivery. J Control Release. 240:77–92.
  • Grewal H, Dhakate SR, Goyal AK, Markandeywar TS, Malik B, Rath G. 2012. Development of transmucosal patch using nanofibers. Artif Cells. Blood Substitutes, Biotechnol. 40:146–150.
  • Güngör S, Erdal MS, Aksu B. 2013. New formulation strategies in topical antifungal therapy. J Cosmet Dermatolog Sci Appl. 3:56–65.
  • Gürbüz A, Özhan G, Güngör S, Erdal MS. 2015. Colloidal carriers of isotretinoin for topical acne treatment: skin uptake, ATR-FTIR and in vitro cytotoxicity studies. Arch Dermatol Res. 307:607–615.
  • Hathout RM, Mansour S, Geneidi AS, Mortada ND. 2011. Visualization, dermatopharmacokinetic analysis and monitoring the conformational effects of a microemulsion formulation in the skin stratum corneum. J Colloid Interface Sci. 354:124–130.
  • Jeu L, Piacenti FJ, Lyakhovetskiy AG, Fung HB. 2003. Voriconazole. Clin Ther. 25:1321–1381.
  • Kamble RN, Gaikwad S, Maske A, Patil SS. 2016. Fabrication of electrospun nanofibres of BCS II drug for enhanced dissolution and permeation across skin. J Adv Res. 7:483–489.
  • Kataria K, Gupta A, Rath G, Mathur RB, Dhakate SR. 2014. In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int J Pharm. 469:102–110.
  • Laha A, Yadav S, Majumdar S, Sharma CS. 2016. In-vitro release study of hydrophobic drug using electrospun cross-linked gelatin nanofibers. Biochem Eng J. 105:481–488.
  • Li C, Fu R, Yu C, Li Z, Guan H, Hu D, Zhao D, Lu L. 2013. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study. Int J Nanomed. 8:4131–4145.
  • Li W, Li X, Chen Y, Li X, Deng H, Wang T, Huang R, Fan G. 2013. Poly(vinyl alcohol)/sodium alginate/layered silicate based nanofibrous mats for bacterial inhibition. Carbohydr Polym. 92:2232–2238.
  • Li H, Wang M, Williams GR, Wu J, Sun X, Lv Y, Zhu LM. 2016. Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials. Rsc Adv. 6:50267–50277.
  • Lu JW, Zhu YL, Guo ZX, Hu P, Yu J. 2006. Electrospinning of sodium alginate with poly(ethylene oxide). Polymer. 47:8026–8031.
  • Mak VH, Potts RO, Guy RH. 1990. Percutaneous penetration enhancement in vivo measured by attenuated total reflectance infrared spectroscopy. Pharm Res. 07:835–841.
  • Marangon FB, Miller D, Giaconi JA, Alfonso EC. 2004. In vitro investigation of voriconazole susceptibility for keratitis and endophthalmitis fungal pathogens. Am J Ophthalmol. 137:820–825.
  • Matthews AG. 2009. Ophthalmic antimicrobial therapy in the horse. Equine Vet Educ. 21:271–280.
  • Moreno-Cortez IE, Romero-Garcia J, Gonzalez-Gonzalez V, Garcia-Gutierrez DI, Garza-Navarro MA, Cruz-Silva R. 2015. Encapsulation and immobilization of papain in electrospun nanofibrous membranes of PVA cross-linked with glutaraldehyde vapor. Mater Sci Eng C Mater Biol Appl. 52:306–314.
  • Mori NM, Patel P, Sheth NR, Rathod L V, Ashara KC. 2017. Fabrication and characterization of film-forming voriconazole transdermal spray for the treatment of fungal infection. Bull Fac Pharm Cairo Univ. 55:41–51.
  • Morrow DIJ, McCarron PA, Woolfson AD, Donnelly RF. 2007. Innovative strategies for enhancing topical and transdermal drug delivery. Open Drug Deliv J. 1:36–59.
  • Pahuja P, Kashyap H, Pawar P. 2014. Design and evaluation of HP-beta-CD based voriconazole formulations for ocular drug delivery. Curr Drug Deliv. 11:223–232.
  • Pawar P, Kashyap H, Malhotra S, Sindhu R. 2013. Hp-beta-CD-voriconazole in situ gelling system for ocular drug delivery: in vitro, stability, and antifungal activities assessment. Biomed Res Int. 2013:1–9. Article ID 341218.
  • Pelipenko J, Kocbek P, Kristl J. 2015. Critical attributes of nanofibers: preparation, drug loading, and tissue regeneration. Int J Pharm. 484:57–74.
  • Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, Diekema DJ. 2011. Wild-type MIC distributions and epidemiological cutoff values for posaconazole and voriconazole and Candida spp. as determined by 24-hour CLSI broth microdilution. J Clin Microbiol. 49:630–637.
  • Prathima Srinivas SK. 2012. Formulation and evaluation of voriconazole loaded nanosponges for oral and topical delivery. Int J Drug Dev Res. 5:55–69.
  • Qurt MS, Esentürk İ, Tan SB, Erdal MS, Araman A, Güngör S. 2018. Voriconazole and sertaconazole loaded colloidal nano-carriers for enhanced skin deposition and improved topical fungal treatment. J Drug Deliv Sci Technol. 48:215–222.
  • Raju YP, N H, Chowdary VH, Nair RS, Basha DJ, N T. 2017. In vitro assessment of non-irritant microemulsified voriconazole hydrogel system. Artif Cells Nanomed Biotechnol. 45:1539–1547.
  • Rezazadeh E, Sabokbar A, Moazeni M, Rezai MS, Badali H. 2016. Microdilution in vitro antifungal susceptibility patterns of Candida species, from mild cutaneous to bloodstream infections. Jundishapur J Microbiol. 9:e34151.
  • Ruela ALM, Perissinato AG, Lino MEdS, Mudrik PS, Pereira GR. 2016. Evaluation of skin absorption of drugs from topical and transdermal formulations. Braz J Pharm Sci. 52:527–544.
  • Saadatmand MM, Yazdanshenas ME, Khajavi R, Mighani F, Toliyat T. 2019. Patterning the surface roughness of a nano fibrous scaffold for transdermal drug release. Int J Nano Dimens. 10:78–88.
  • Sang Q, Williams GR, Wu H, Liu K, Li H, Zhu LM. 2017. Electrospun gelatin/sodium bicarbonate and poly(lactide-co-ε-caprolactone)/sodium bicarbonate nanofibers as drug delivery systems. Mater Sci Eng C. 81:359–365.
  • Sarhan WA, Azzazy H. 2015. High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects. Carbohydr Polym. 122:135–143.
  • Schwartz RA. 2004. Superficial fungal infections. Lancet. 364:1173–1182.
  • Shaikh RP, Kumar P, Choonara YE, Du Toit LC, Pillay V. 2012. Crosslinked electrospun PVA nanofibrous membranes: elucidation of their physicochemical, physicomechanical and molecular disposition. Biofabrication. 4:025002.
  • Shalumon KT, Anulekha KH, Nair SV, Nair SV, Chennazhi KP, Jayakumar R. 2011. Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol. 49:247–254.
  • Siafaka P, Üstündağ Okur N, Mone M, Giannakopoulou S, Er S, Pavlidou E, Karavas E, Bikiaris D. 2016. Two different approaches for oral administration of voriconazole loaded formulations: electrospun fibers versus beta-cyclodextrin complexes. Int J Mol Sci. 17:282.
  • Soliman GM. 2017. Nanoparticles as safe and effective delivery systems of antifungal agents: achievements and challenges. Int J Pharm. 523:15–32.
  • Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD. 2012. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces. 92:299–304.
  • Spampinato C, Leonardi D. 2013. Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int. 2013:1–13. Article ID: 204237.
  • Sun X, Yu Z, Cai Z, Yu L, Lv Y. 2016. Voriconazole composited polyvinyl alcohol/hydroxypropyl-beta-cyclodextrin nanofibers for ophthalmic delivery. PLoS One. 11:e0167961.
  • Thiel MA, Zinkernagel AS, Burhenne J, Kaufmann C, Haefeli WE. 2007. Voriconazole concentration in human aqueous humor and plasma during topical or combined topical and systemic administration for fungal keratitis. Antimicrob Agents Chemother. 51:239–244.
  • Wang W, Jin X, Zhu Y, Zhu C, Yang J, Wang H, Lin T. 2016. Effect of vapor-phase glutaraldehyde crosslinking on electrospun starch fibers. Carbohydr Polym. 140:356–361.
  • Wu SC, Chang WH, Dong GC, Chen KY, Chen YS, Yao CH. 2011. Cell adhesion and proliferation enhancement by gelatin nanofiber scaffolds. J Bioact Compat Polym. 26:565–577.
  • Yang JM, Yang JH, Tsou SC, Ding CH, Hsu CC, Yang KC, Yang CC, Chen KS, Chen SW, Wang JS. 2016. Cell proliferation on PVA/sodium alginate and PVA/poly(gamma-glutamic acid) electrospun fiber. Mater Sci Eng C Mater Biol Appl. 66:170–177.
  • Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. 2006. Crosslinking of the electrospun gelatin nanofibers. Polymer. 47:2911–2917.
  • Zonios DI, Bennett JE. 2008. Update on azole antifungals. Semin Respir Crit Care Med. 29:198–210.
  • Zulkifli FH, Jahir Hussain FS, Abdull Rasad MS, Mohd Yusoff M. 2015. Improved cellular response of chemically crosslinked collagen incorporated hydroxyethyl cellulose/poly(vinyl) alcohol nanofibers scaffold. J Biomater Appl. 29:1014–1027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.