1,988
Views
102
CrossRef citations to date
0
Altmetric
Review Articles

Deep eutectic solvents for pharmaceutical formulation and drug delivery applications

ORCID Icon & ORCID Icon
Pages 779-796 | Received 15 Jul 2019, Accepted 24 Feb 2020, Published online: 09 Mar 2020

References

  • Abbott AP, Ahmed EI, Prasad K, Qader IB, Ryder KS. 2017. Liquid pharmaceuticals formulation by eutectic formation. Fluid Phase Equilib. 448:2–8.
  • Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. 2003. Novel solvent properties of choline chloride/urea mixtures. Chem Commun. 2003(1):70–71.
  • Abo-Hamad A, Hayyan M, AlSaadi MA, Hashim MA. 2015. Potential applications of deep eutectic solvents in nanotechnology. Chem Eng J. 273:551–567.
  • Abo-Hamad A, Hayyan M, AlSaadi MA, Mirghani MES, Hashim MA. 2017. Functionalization of carbon nanotubes using eutectic mixtures: a promising route for enhanced aqueous dispersibility and electrochemical activity. Chem Eng J. 311:326–339.
  • Ahmadi R, Hemmateenejad B, Safavi A, Shojaeifard Z, Mohabbati M, Firuzi O. 2018. Assessment of cytotoxicity of choline chloride-based natural deep eutectic solvents against human HEK-293 cells: A QSAR analysis. Chemosphere. 209:831–838.
  • Alonso DA, Baeza A, Chinchilla R, Guillena G, Pastor IM, Ramón DJ. 2016. Deep eutectic solvents: the organic reaction medium of the century. Eur J Org Chem. 2016(4):612–632.
  • Alvarez-Román R, Merino G, Kalia YN, Naik A, Guy RH. 2003. Skin permeability enhancement by low frequency sonophoresis: lipid extraction and transport pathways. J Pharm Sci. 92(6):1138–1146.
  • Amde M, Liu J-F, Pang L. 2015. Environmental application, fate, effects, and concerns of ionic liquids: a review. Environ Sci Technol. 49(21):12611–12627.
  • Antonietti M, Förster S. 2003. Vesicles and liposomes: a self-assembly principle beyond lipids. Adv Mater. 15(16):1323–1333.
  • Ariga K, Lvov YM, Kawakami K, Ji Q, Hill JP. 2011. Layer-by-layer self-assembled shells for drug delivery. Adv Drug Del Rev. 63(9):762–771.
  • Arnold T, Jackson AJ, Sanchez-Fernandez A, Magnone D, Terry AE, Edler KJ. 2015. Surfactant behavior of sodium dodecylsulfate in deep eutectic solvent choline chloride/urea. Langmuir. 31(47):12894–12902.
  • Aroso IM, Craveiro R, Rocha Â, Dionísio M, Barreiros S, Reis RL, Paiva A, Duarte A. 2015. Design of controlled release systems for THEDES—therapeutic deep eutectic solvents, using supercritical fluid technology. Int J Pharm. 492(1–2):73–79.
  • Aroso IM, Silva JC, Mano F, Ferreira ASD, Dionísio M, Sá-Nogueira I, Barreiros S, Reis RL, Paiva A, Duarte A. 2016. Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. Eur J Pharm Biopharm. 98:57–66.
  • Balk A, Holzgrabe U, Meinel L. 2015. Pro et contra’ ionic liquid drugs – challenges and opportunities for pharmaceutical translation. Eur J Pharm Biopharm. 94:291–304.
  • Banerjee A, Ibsen K, Iwao Y, Zakrewsky M, Mitragotri S. 2017. Transdermal protein delivery using choline and geranate (CAGE) deep eutectic solvent. Adv Healthcare Mater. 6(15):1601411.
  • Benson HAE, Namjoshi S. 2008. Proteins and peptides: strategies for delivery to and across the skin. J Pharm Sci. 97(9):3591–3610.
  • Bhatt J, Mondal D, Bhojani G, Chatterjee S, Prasad K. 2015. Preparation of bio-deep eutectic solvent triggered cephalopod shaped silver chloride-DNA hybrid material having antibacterial and bactericidal activity. Mater Sci Eng C. 56:125–131.
  • Bhatt J, Mondal D, Devkar RV, Prasad K. 2016. Synthesis of functionalized N-doped graphene DNA hybrid material in a deep eutectic solvent. Green Chem. 18(15):4297–4302.
  • Bica K, Shamshina J, Hough WL, MacFarlane DR, Rogers RD. 2011. Liquid forms of pharmaceutical co-crystals: exploring the boundaries of salt formation. Chem Commun. 47(8):2267–2269.
  • Brodin A, Nyqvist-Mayer A, Broberg F, Wadsten T, Forslund B. 1984. Phase diagram and aqueous solubility of the lidocaine-prilocaine binary system. J Pharm Sci. 73(4):481–484.
  • Brown MB, Martin GP, Jones SA, Akomeah FK. 2006. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv. 13(3):175–187.
  • Bryant SJ, Atkin R, Warr GG. 2016. Spontaneous vesicle formation in a deep eutectic solvent. Soft Matter. 12(6):1645–1648.
  • Bryant SJ, Atkin R, Warr GG. 2017. Effect of deep eutectic solvent nanostructure on phospholipid bilayer phases. Langmuir. 33(27):6878–6884.
  • Carriazo D, Serrano MC, Gutiérrez MC, Ferrer ML, del Monte F. 2012. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem Soc Rev. 41(14):4996–5014.
  • Chen J, Li S-F, Yao Z-F, Yang D-W, Zhang L-W. 2016. Improved stability of salvianolic acid B from Radix Salviae miltiorrhizae in deep eutectic solvents Anal Methods. 8(11):2502–2509.
  • Chen L, Sharifzadeh M, Mac Dowell N, Welton T, Shah N, Hallett JP. 2014. Inexpensive ionic liquids: [HSO4]−-based solvent production at bulk scale. Green Chem. 16(6):3098–3106.
  • Chen F, Xie S, Zhang J, Liu R. 2013. Synthesis of spherical Fe3O4 magnetic nanoparticles by co-precipitation in choline chloride/urea deep eutectic solvent. Mater Lett. 112:177–179.
  • Choi YH, van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends I, Witkamp G-J, Verpoorte R. 2011. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 156(4):1701–1705.
  • Cruz H, Jordão N, Branco LC. 2017. Deep eutectic solvents (DESs) as low-cost and green electrolytes for electrochromic devices. Green Chem. 19(7):1653–1658.
  • Cui W, Li J, Decher G. 2016. Self-assembled smart nanocarriers for targeted drug delivery. Adv Mater. 28(6):1302–1311.
  • Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH. 2013. Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta. 766:61–68.
  • Dai Y, Verpoorte R, Choi YH. 2014. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem. 159:116–121.
  • Dai Y, Witkamp G-J, Verpoorte R, Choi YH. 2015. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 187:14–19.
  • Dehsorkhi A, Castelletto V, Hamley IW. 2014. Self-assembling amphiphilic peptides. J Pept Sci. 20(7):453–467.
  • del Monte F, Carriazo D, Serrano MC, Gutiérrez MC, Ferrer ML. 2014. Deep eutectic solvents in polymerizations: a greener alternative to conventional syntheses. ChemSusChem. 7(4):999–1009.
  • Dubey V, Mishra D, Asthana A, Jain NK. 2006. Transdermal delivery of a pineal hormone: melatonin via elastic liposomes. Biomaterials. 27(18):3491–3496.
  • Durand E, Lecomte J, Baréa B, Piombo G, Dubreucq E, Villeneuve P. 2012. Evaluation of deep eutectic solvents as new media for Candida antarctica B lipase catalyzed reactions. Process Biochem. 47(12):2081–2089.
  • Durand E, Lecomte J, Upasani R, Chabi B, Bayrasy C, Baréa B, Jublanc E, Clarke MJ, Moore DJ, Crowther J, et al. 2017. Evaluation of the ROS inhibiting activity and mitochondrial targeting of phenolic compounds in fibroblast cells model system and enhancement of efficiency by natural deep eutectic solvent (NADES) formulation. Pharm Res. 34(5):1134–1146.
  • Egorova KS, Ananikov VP. 2014. Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. ChemSusChem. 7(2):336–360.
  • Egorova KS, Gordeev EG, Ananikov VP. 2017. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev. 117(10):7132–7189.
  • Eichenfield LF, Funk A, Fallon-Friedlander S, Cunningham BB. 2002. A clinical study to evaluate the efficacy of ELA-max (4% liposomal lidocaine) as compared with eutectic mixture of local anesthetics cream for pain reduction of venipuncture in children. Pediatrics. 109(6):1093–1099.
  • Emadi F, Amini A, Gholami A, Ghasemi Y. 2017. Functionalized graphene oxide with chitosan for protein nanocarriers to protect against enzymatic cleavage and retain collagenase activity. Sci Rep. 7(1):42258.
  • Emami S, Adibkia K, Barzegar-Jalali M, Siahi-Shadbad M. 2019. Piroxicam cocrystals with phenolic coformers: preparation, characterization, and dissolution properties. Pharm Dev Technol. 24(2):199–210.
  • Emami S, Jouyban A, Valizadeh H, Shayanfar A. 2015. Are crystallinity parameters critical for drug solubility prediction? J Solut Chem. 44(12):2297–2315.
  • Emami S, Siahi-Shadbad M, Adibkia K, Barzegar-Jalali M. 2018. Recent advances in improving oral drug bioavailability by cocrystals. Bioimpacts. 8(4):305–320.
  • Engelbrecht TN, Demé B, Dobner B, Neubert R. 2012. Study of the influence of the penetration enhancer isopropyl myristate on the nanostructure of stratum corneum lipid model membranes using neutron diffraction and deuterium labelling. Skin Pharmacol Physiol. 25(4):200–207.
  • Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. 2018. Pharmapolymers in the 21st century: synthetic polymers in drug delivery applications. Prog Polym Sci. 87:107–164.
  • Faggian M, Sut S, Perissutti B, Baldan V, Grabnar I, Dall’Acqua S. 2016. Natural deep eutectic solvents (NADES) as a tool for bioavailability improvement: pharmacokinetics of rutin dissolved in proline/glycine after oral administration in rats: possible application in nutraceuticals. Molecules. 21(11):1531.
  • Fiala S, Jones SA, Brown MB. 2010. A fundamental investigation into the effects of eutectic formation on transmembrane transport. Int J Pharm. 393(1–2):68–73.
  • Florindo C, Oliveira FS, Rebelo LPN, Fernandes AM, Marrucho IM. 2014. Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustainable Chem Eng. 2(10):2416–2425.
  • Francisco M, van den Bruinhorst A, Kroon MC. 2013. Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chem Int Ed. 52(11):3074–3085.
  • Gajraj NM, Pennant JH, Watcha MF. 1994. Eutectic mixture of local anesthetics (EMLA®) cream. Anesth Analg. 78(3):574–583.
  • Gala U, Chuong MC, Varanasi R, Chauhan H. 2015. Characterization and comparison of lidocaine-tetracaine and lidocaine-camphor eutectic mixtures based on their crystallization and hydrogen-bonding abilities. AAPS PharmSciTech. 16(3):528–536.
  • Galvao J, Davis B, Tilley M, Normando E, Duchen MR, Cordeiro MF. 2014. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 28(3):1317–1330.
  • García-Argüelles S, Serrano MC, Gutiérrez MC, Ferrer ML, Yuste L, Rojo F, del Monte F. 2013. Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties. Langmuir. 29(30):9525–9534.
  • Greaves TL, Drummond CJ. 2008. Ionic liquids as amphiphile self-assembly media. Chem Soc Rev. 37(8):1709–1726.
  • Greaves TL, Drummond CJ. 2013. Solvent nanostructure, the solvophobic effect and amphiphile self-assembly in ionic liquids. Chem Soc Rev. 42(3):1096–1120.
  • Grodowska K, Parczewski A. 2010. Organic solvents in the pharmaceutical industry. Acta Pol Pharm. 67(1):3–12.
  • Guajardo N, Domínguez de María P, Ahumada K, Schrebler RA, Ramírez-Tagle R, Crespo FA, Carlesi C. 2017. Water as cosolvent: nonviscous deep eutectic solvents for efficient lipase-catalyzed esterifications. ChemCatChem. 9(8):1393–1396.
  • Guo X, Mei N. 2014. Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal. 22(1):105–115.
  • Gutiérrez A, Aparicio S, Atilhan M. 2019. Design of arginine-based therapeutic deep eutectic solvents as drug solubilization vehicles for active pharmaceutical ingredients. Phys Chem Chem Phys. 21(20):10621–10634.
  • Gutiérrez A, Atilhan M, Aparicio S. 2018. A theoretical study on lidocaine solubility in deep eutectic solvents. Phys Chem Chem Phys. 20(43):27464–27473.
  • Gutiérrez M C, Ferrer M L, Mateo C. R, del Monte F. 2009. Freeze-drying of aqueous solutions of deep eutectic solvents: a suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir. 25(10):5509–5515.
  • Hammond OS, Bowron DT, Edler KJ. 2017. The effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solution. Angew Chem Int Ed. 56(33):9782–9785.
  • Han S, Samanta A, Xie X, Huang L, Peng J, Park S J, Teh D B L, Choi Y, Chang Y-T, All A H, et al. 2017. Gold and hairpin DNA functionalization of upconversion nanocrystals for imaging and in vivo drug delivery. Adv Mater. 29(18):1700244.
  • Hayyan M, Hashim MA, Al-Saadi MA, Hayyan A, AlNashef IM, Mirghani ME. 2013. Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere. 93(2):455–459.
  • Hayyan M, Hashim MA, Hayyan A, Al-Saadi MA, AlNashef IM, Mirghani MES, Saheed OK. 2013. Are deep eutectic solvents benign or toxic? Chemosphere. 90(7):2193–2195.
  • Hayyan M, Looi CY, Hayyan A, Wong WF, Hashim MA. 2015. In vitro and in vivo toxicity profiling of ammonium-based deep eutectic solvents. PLoS One. 10(2):e0117934.
  • Hayyan M, Mbous YP, Looi CY, Wong WF, Hayyan A, Salleh Z, Mohd-Ali O. 2016. Natural deep eutectic solvents: cytotoxic profile. Springerplus. 5(1):913.
  • Jablonský M, Škulcová A, Šima J. 2019. Use of deep eutectic solvents in polymer chemistry–a review. Molecules. 24(21):3978.
  • Jeliński T, Przybyłek M, Cysewski P. 2019. Natural deep eutectic solvents as agents for improving solubility, stability and delivery of curcumin. Pharm Res. 36(8):116.
  • Jin Y, Khadka DB, Cho W-J. 2016. Pharmacological effects of berberine and its derivatives: a patent update. Expert Opin Ther Pat. 26(2):229–243.
  • Juneidi I, Hayyan M, Hashim MA. 2018. Intensification of biotransformations using deep eutectic solvents: overview and outlook. Process Biochem. 66:33–60.
  • Kang L, Jun HW, McCall JW. 2000. Physicochemical studies of lidocaine-menthol binary systems for enhanced membrane transport. Int J Pharm. 206(1–2):35–42.
  • Kaplun-Frischoff Y, Touitou E. 1997. Testosterone skin permeation enhancement by menthol through formation of eutectic with drug and interaction with skin lipids. J Pharm Sci. 86(12):1394–1399.
  • Karande P, Mitragotri S. 2009. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim Biophys Acta 1788(11):2362–2373.
  • Karimi M, Hesaraki S, Alizadeh M, Kazemzadeh A. 2016. Synthesis of calcium phosphate nanoparticles in deep-eutectic choline chloride–urea medium: investigating the role of synthesis temperature on phase characteristics and physical properties. Ceram Int. 42(2):2780–2788.
  • Keramatnia F, Jouyban A, Valizadeh H, Delazar A, Shayanfar A. 2016. Ketoconazole ionic liquids with citric and tartaric acid: synthesis, characterization and solubility study. Fluid Phase Equilib. 425:108–113.
  • Kudłak B, Owczarek K, Namieśnik J. 2015. Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review. Environ Sci Pollut Res. 22(16):11975–11992.
  • Kumari A, Yadav SK, Yadav SC. 2010. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18.
  • Lazerges M, Rietveld IB, Corvis Y, Céolin R, Espeau P. 2010. Thermodynamic studies of mixtures for topical anesthesia: lidocaine–salol binary phase diagram. Thermochim Acta 497(1–2):124–128.
  • Li Z, Lee PI. 2016. Investigation on drug solubility enhancement using deep eutectic solvents and their derivatives. Int J Pharm. 505(1–2):283–288.
  • Li Q, Wang J, Lei N, Yan M, Chen X, Yue X. 2018. Phase behaviours of a cationic surfactant in deep eutectic solvents: from micelles to lyotropic liquid crystals. Phys Chem Chem Phys. 20(17):12175–12181.
  • Li X, Wang Y-K, Song Z-Q, Du Z-Q, Yang C-X. 2016. Dimethyl sulfoxide perturbs cell cycle progression and spindle organization in porcine meiotic oocytes. PLoS One. 11(6):e0158074.
  • Liang R, Wei M, Evans DG, Duan X. 2014. Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem Commun. 50(91):14071–14081.
  • Liao H-G, Jiang Y-X, Zhou Z-Y, Chen S-P, Sun S-G. 2008. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure–functionality relationships in electrocatalysis. Angew Chem Int Ed. 47(47):9100–9103.
  • Liu Y-T, Chen Y-A, Xing Y-J. 2014. Synthesis and characterization of novel ternary deep eutectic solvents. Chin Chem Lett. 25(1):104–106.
  • Liu Y, Friesen JB, McAlpine JB, Lankin DC, Chen S-N, Pauli GF. 2018. Natural deep eutectic solvents: properties, applications, and perspectives. J Nat Prod. 81(3):679–690.
  • Liu C, Hu J, Sui H, Zhao Q, Zhang X, Wang W. 2017. Enhanced skin permeation of glabridin using eutectic mixture-based nanoemulsion. Drug Deliv Transl Res. 7(2):325–332.
  • Lu C, Cao J, Wang N, Su E. 2016. Significantly improving the solubility of non-steroidal anti-inflammatory drugs in deep eutectic solvents for potential non-aqueous liquid administration. Med Chem Commun. 7(5):955–959.
  • Madhumathi K, Sudheesh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R. 2010. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci: Mater Med. 21(2):807–813.
  • Mai Y, Eisenberg A. 2012. Self-assembly of block copolymers. Chem Soc Rev. 41(18):5969–5985.
  • Marrucho IM, Branco LC, Rebelo LP. 2014. Ionic liquids in pharmaceutical applications. Annu Rev Chem Biomol Eng. 5(1):527–546.
  • McDonald S, Murphy T, Imberti S, Warr GG, Atkin R. 2018. Amphiphilically nanostructured deep eutectic solvents. J Phys Chem Lett. 9(14):3922–3927.
  • Mi F-L, Shyu S-S, Lin Y-M, Wu Y-B, Peng C-K, Tsai Y-H. 2003. Chitin/PLGA blend microspheres as a biodegradable drug delivery system: a new delivery system for protein. Biomaterials 24(27):5023–5036.
  • Mizuuchi H, Jaitely V, Murdan S, Florence AT. 2008. Room temperature ionic liquids and their mixtures: potential pharmaceutical solvents. Eur J Pharm Sci. 33(4–5):326–331.
  • Mondal D, Bhatt J, Sharma M, Chatterjee S, Prasad K. 2014. A facile approach to prepare a dual functionalized DNA based material in a bio-deep eutectic solvent. Chem Commun. 50(30):3989–3992.
  • Mondal D, Sharma M, Mukesh C, Gupta V, Prasad K. 2013. Improved solubility of DNA in recyclable and reusable bio-based deep eutectic solvents with long-term structural and chemical stability. Chem Commun. 49(83):9606–9608.
  • Moniruzzaman M, Tahara Y, Tamura M, Kamiya N, Goto M. 2010. Ionic liquid-assisted transdermal delivery of sparingly soluble drugs. Chem Commun. 46(9):1452–1454.
  • Morrison HG, Sun CC, Neervannan S. 2009. Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int J Pharm. 378(1–2):136–139.
  • Mota-Morales JD, Sánchez-Leija RJ, Carranza A, Pojman JA, del Monte F, Luna-Bárcenas G. 2018. Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials. Prog Polym Sci. 78:139–153.
  • Mottu F, Laurent A, Rufenacht DA, Doelker E. 2000. Organic solvents for pharmaceutical parenterals and embolic liquids: a review of toxicity data. PDA J Pharm Sci Technol. 54(6):456–469.
  • Mukesh C, Mondal D, Sharma M, Prasad K. 2014. Choline chloride–thiourea, a deep eutectic solvent for the production of chitin nanofibers. Carbohydr Polym. 103:466–471.
  • Mukesh C, Prasad K. 2015. Formation of multiple structural formats of DNA in a bio-deep eutectic solvent. Macromol Chem Phys. 216(10):1061–1066.
  • Mukesh C, Upadhyay KK, Devkar RV, Chudasama NA, Raol GG, Prasad K. 2016. Preparation of a noncytotoxic hemocompatible ion gel by self-polymerization of HEMA in a green deep eutectic solvent. Macromol Chem Phys. 217(17):1899–1906.
  • Naik A, Kalia YN, Guy RH. 2000. Transdermal drug delivery: overcoming the skin’s barrier function. Pharm Sci Technol Today 3(9):318–326.
  • Nanda A, Nanda S, Ghilzai NM. 2006. Current developments using emerging transdermal technologies in physical enhancement methods. CDD. 3(3):233–242.
  • Newman AW, Reutzel-Edens SM, Zografi G. 2008. Characterization of the “hygroscopic” properties of active pharmaceutical ingredients. J Pharm Sci. 97(3):1047–1059.
  • Nyqvist-Mayer AA, Brodin AF, Frank SG. 1986. Drug release studies on an oil-water emulsion based on a eutectic mixture of lidocaine and prilocaine as the dispersed phase. J Pharm Sci. 75(4):365–373.
  • Olivares B, Martinez F, Rivas L, Calderon C, M Munita J, R Campodonico P. 2018. A natural deep eutectic solvent formulated to stabilize beta-lactam antibiotics. Sci Rep. 8(1):14900.
  • Pal M, Rai R, Yadav A, Khanna R, Baker GA, Pandey S. 2014. Self-aggregation of sodium dodecyl sulfate within (choline chloride + urea) deep eutectic solvent. Langmuir. 30(44):13191–13198.
  • Pal M, Singh RK, Pandey S. 2015. Evidence of self-aggregation of cationic surfactants in a choline chloride + glycerol deep eutectic solvent. ChemPhysChem. 16(12):2538–2542.
  • Palmelund H, Andersson MP, Asgreen CJ, Boyd BJ, Rantanen J, Löbmann K. 2019. Tailor-made solvents for pharmaceutical use? Experimental and computational approach for determining solubility in deep eutectic solvents (DES). Int J Pharma X. 1:100034.
  • Pandey A, Pandey S. 2014. Solvatochromic probe behavior within choline chloride-based deep eutectic solvents: effect of temperature and water. J Phys Chem B. 118(50):14652–14661.
  • Park CW, Mansour HM, Oh TO, Kim JY, Ha JM, Lee BJ, Chi SC, Rhee YS, Park ES. 2012. Phase behavior of itraconazole-phenol mixtures and its pharmaceutical applications. Int J Pharm. 436(1–2):652–658.
  • Pham QD, Björklund S, Engblom J, Topgaard D, Sparr E. 2016. Chemical penetration enhancers in stratum corneum—relation between molecular effects and barrier function. J Control Release. 232:175–187.
  • Plechkova NV, Seddon KR. 2008. Applications of ionic liquids in the chemical industry. Chem Soc Rev. 37(1):123–150.
  • Porst H, Burri A. 2017. Fortacin spray for the treatment of premature ejaculation. Urologia. 84(2 suppl):1–10.
  • Pouton CW. 2006. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 29(3–4):278–287.
  • Prabhakaran MP, Nair AS, Kai D, Ramakrishna S. 2012. Electrospun composite scaffolds containing poly(octanediol-co-citrate) for cardiac tissue engineering. Biopolymers. 97(7):529–538.
  • Pradeepkumar P, Elgorban AM, Bahkali AH, Rajan M. 2018. Natural solvent-assisted synthesis of amphiphilic co-polymeric nanomicelles for prolonged release of camptothecin delivery. New J Chem. 42(12):10366–10375.
  • Prausnitz MR, Mitragotri S, Langer R. 2004. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 3(2):115–124.
  • Pujara N, Jambhrunkar S, Wong KY, McGuckin M, Popat A. 2017. Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate. J Colloid Interface Sci. 488:303–308.
  • Qi X, Wei W, Li J, Liu Y, Hu X, Zhang J, Bi L, Dong W. 2015. Fabrication and characterization of a novel anticancer drug delivery system: salecan/poly(methacrylic acid) semi-interpenetrating polymer network hydrogel. ACS Biomater Sci Eng. 1(12):1287–1299.
  • Radosevic K, Bubalo MC, Srcek VG, Grgas D, Dragicevic TL, Redovnikovic IR. 2015. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol Environ Saf. 112:46–53.
  • Radosevic K, Canak I, Panic M, Markov K, Bubalo MC, Frece J, Srcek VG, Redovnikovic IR. 2018. Antimicrobial, cytotoxic and antioxidative evaluation of natural deep eutectic solvents. Environ Sci Pollut Res Int. 25(14):14188–14196.
  • Radošević K, Ćurko N, Gaurina Srček V, Cvjetko Bubalo M, Tomašević M, Kovačević Ganić K, Radojčić Redovniković I. 2016. Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity. LWT. 73:45–51.
  • Rinaudo M. 2006. Chitin and chitosan: properties and applications. Prog Polym Sci. 31(7):603–632.
  • Rozema E, van Dam AD, Sips HCM, Verpoorte R, Meijer OC, Kooijman S, Choi YH. 2015. Extending pharmacological dose-response curves for salsalate with natural deep eutectic solvents. RSC Adv. 5(75):61398–61401.
  • Sanchez-Fernandez A, Arnold T, Jackson AJ, Fussell SL, Heenan RK, Campbell RA, Edler KJ. 2016. Micellization of alkyltrimethylammonium bromide surfactants in choline chloride:glycerol deep eutectic solvent. Phys Chem Chem Phys. 18(48):33240–33249.
  • Sanchez-Fernandez A, Moody GL, Murfin LC, Arnold T, Jackson AJ, King SM, Lewis SE, Edler KJ. 2018. Self-assembly and surface behaviour of pure and mixed zwitterionic amphiphiles in a deep eutectic solvent. Soft Matter. 14(26):5525–5536.
  • Sánchez-Leija RJ, Pojman JA, Luna-Bárcenas G, Mota-Morales JD. 2014. Controlled release of lidocaine hydrochloride from polymerized drug-based deep-eutectic solvents. J Mater Chem B. 2(43):7495–7501.
  • Santos NC, Figueira-Coelho J, Martins-Silva J, Saldanha C. 2003. Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem Pharmacol. 65(7):1035–1041.
  • Santos F, P.S. Leitão MI, C. Duarte AR. 2018. Properties of therapeutic deep eutectic solvents of l-arginine and ethambutol for tuberculosis treatment. Molecules. 24(1):55.
  • Sapra B, Jain S, Tiwary AK. 2008. Percutaneous permeation enhancement by terpenes: mechanistic view. AAPS J. 10(1):120.
  • Selselehjonban S, Garjani A, Osouli-Bostanabad K, Tanhaei A, Emami S, Adibkia K, Barzegar-Jalali M. 2019. Physicochemical and pharmacological evaluation of carvedilol-eudragit® RS100 electrosprayed nanostructures. Iran J Basic Med Sci. 22(5):547–556.
  • Serajuddin A. 1999. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 88(10):1058–1066.
  • Serrano MC, Carbajal L, Ameer GA. 2011. Novel biodegradable shape-memory elastomers with drug-releasing capabilities. Adv Mater. 23(19):2211–2215.
  • Serrano MC, Gutiérrez MC, Jiménez R, Ferrer ML, Monte F. 2012. Synthesis of novel lidocaine-releasing poly(diol-co-citrate) elastomers by using deep eutectic solvents. Chem Commun. 48(4):579–581.
  • Shamseddin A, Crauste C, Durand E, Villeneuve P, Dubois G, Durand T, Vercauteren J, Veas F. 2017. Resveratrol formulated with a natural deep eutectic solvent inhibits active matrix metalloprotease-9 in hormetic conditions. Eur J Lipid Sci Technol. 119(11):1700171.
  • Sharma M, Mukesh C, Mondal D, Prasad K. 2013. Dissolution of α-chitin in deep eutectic solvents. RSC Adv. 3(39):18149–18155.
  • Shayanfar S, Shayanfar A. 2018. Ionic liquid forms of carvedilol: preparation, characterization, and solubility studies. J Pharm Innov. 14(4):382–390.
  • Shekaari H, Zafarani-Moattar MT, Shayanfar A, Mokhtarpour M. 2018. Effect of choline chloride/ethylene glycol or glycerol as deep eutectic solvents on the solubility and thermodynamic properties of acetaminophen. J Mol Liq. 249:1222–1235.
  • Shen Q, Li X, Li W, Zhao X. 2011. Enhanced intestinal absorption of daidzein by borneol/menthol eutectic mixture and microemulsion. AAPS PharmSciTech. 12(4):1044–1049.
  • Sheng Q, Liu R, Zheng J. 2012. Prussian blue nanospheres synthesized in deep eutectic solvents. Nanoscale. 4(21):6880–6886.
  • Smith EL, Abbott AP, Ryder KS. 2014. Deep eutectic solvents (DESs) and their applications. Chem Rev. 114(21):11060–11082.
  • Stott PW, Williams AC, Barry BW. 1998. Transdermal delivery from eutectic systems: enhanced permeation of a model drug, ibuprofen. J Control Release. 50(1–3):297–308.
  • Stott PW, Williams AC, Barry BW. 2001. Mechanistic study into the enhanced transdermal permeation of a model beta-blocker, propranolol, by fatty acids: a melting point depression effect. Int J Pharm. 219(1–2):161–176.
  • Sut S, Faggian M, Baldan V, Poloniato G, Castagliuolo I, Grabnar I, Perissutti B, Brun P, Maggi F, Voinovich D, et al. 2017. Natural deep eutectic solvents (NADES) to enhance berberine absorption: An in vivo pharmacokinetic study. Molecules. 22(11):1921.
  • Svenson S. 2004. Controlling surfactant self-assembly. Curr Opin Colloid Interface Sci. 9(3):201–212.
  • Takagi T, Ramachandran C, Bermejo M, Yamashita S, Yu LX, Amidon GL. 2006. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol Pharm. 3(6):631–643.
  • Talebian S, Foroughi J, Wade SJ, Vine KL, Dolatshahi-Pirouz A, Mehrali M, Conde J, Wallace GG. 2018. Biopolymers for antitumor implantable drug delivery systems: recent advances and future outlook. Adv Mater. 30(31):1706665.
  • Tang B, Row KH. 2013. Recent developments in deep eutectic solvents in chemical sciences. Monatsh Chem. 144(10):1427–1454.
  • Thayer AM. 2010. Finding solutions. Chem Eng News. 88(22):13–18.
  • Tibbitt MW, Dahlman JE, Langer R. 2016. Emerging frontiers in drug delivery. J Am Chem Soc. 138(3):704–717.
  • Tomé LIN, Baião V, da Silva W, Brett C. 2018. Deep eutectic solvents for the production and application of new materials. Appl Mater Today. 10:30–50.
  • Wagle DV, Zhao H, Baker GA. 2014. Deep eutectic solvents: sustainable media for nanoscale and functional materials. Acc Chem Res. 47(8):2299–2308.
  • Wang W, Cai Y, Liu Y, Zhao Y, Feng J, Liu C. 2017. Microemulsions based on paeonol-menthol eutectic mixture for enhanced transdermal delivery: formulation development and in vitro evaluation. Artif Cells Nanomed Biotechnol. 45(6):1–6.
  • Wang H, Gurau G, Shamshina J, Cojocaru OA, Janikowski J, MacFarlane DR, Davis JH, Rogers RD. 2014. Simultaneous membrane transport of two active pharmaceutical ingredients by charge assisted hydrogen bond complex formation. Chem Sci. 5(9):3449–3456.
  • Wen Q, Chen J-X, Tang Y-L, Wang J, Yang Z. 2015. Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere. 132:63–69.
  • Wilkes JS, Zaworotko MJ. 1992. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc, Chem Commun. (13):965–967.
  • Williams HD, Sahbaz Y, Ford L, Nguyen T-H, Scammells PJ, Porter C. 2014. Ionic liquids provide unique opportunities for oral drug delivery: structure optimization and in vivo evidence of utility. Chem Commun. 50(14):1688–1690.
  • Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter C. 2013. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 65(1):315–499.
  • Wolbert F, Brandenbusch C, Sadowski G. 2019. Selecting excipients forming therapeutic deep eutectic systems—a mechanistic approach. Mol Pharm. 16(7):3091–3099.
  • Woolfson AD, Malcolm RK, Campbell K, Jones DS, Russell JA. 2000. Rheological, mechanical and membrane penetration properties of novel dual drug systems for percutaneous delivery. J Control Release. 67(2–3):395–408.
  • Yadav A, Pandey S. 2014. Densities and viscosities of (choline chloride + urea) deep eutectic solvent and its aqueous mixtures in the temperature range 293.15 K to 363.15 K. J Chem Eng Data. 59(7):2221–2229.
  • Yang C, Wang X, Yao X, Zhang Y, Wu W, Jiang X. 2015. Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery. J Control Release. 205:206–217.
  • Zahn S. 2017. Deep eutectic solvents: Similia similibus solvuntur? Phys Chem Chem Phys. 19(5):4041–4047.
  • Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF. 2019. From nanoengineering to nanomedicine: a facile route to enhance biocompatibility of graphene as a potential nano-carrier for targeted drug delivery using natural deep eutectic solvents. Chem Eng Sci. 195:95–106.
  • Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF. 2020. Doxorubicin loading on functional graphene as a promising nanocarrier using ternary deep eutectic solvent systems. ACS Omega. 5(3):1656–1668.
  • Zakrewsky M, Lovejoy KS, Kern TL, Miller TE, Le V, Nagy A, Goumas AM, Iyer RS, Del Sesto RE, Koppisch AT, et al. 2014. Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization. Proc Natl Acad Sci USA. 111(37):13313–13318.
  • Zhang Y, Hou Z, Ge Y, Deng K, Liu B, Li X, Li Q, Cheng Z, Ma P, Li C, et al. 2015. DNA-hybrid-gated photothermal mesoporous silica nanoparticles for NIR-responsive and aptamer-targeted drug delivery. ACS Appl Mater Interfaces. 7(37):20696–20706.
  • Zhang S, Marini DM, Hwang W, Santoso S. 2002. Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol. 6(6):865–871.
  • Zhang H, Wang Y, Xu K, Li N, Wen Q, Yang Q, Zhou Y. 2016. Ternary and binary deep eutectic solvents as a novel extraction medium for protein partitioning. Anal Methods. 8(46):8196–8207.
  • Zhang J, Wu T, Chen S, Feng P, Bu X. 2009. Versatile structure-directing roles of deep-eutectic solvents and their implication in the generation of porosity and open metal sites for gas storage. Angew Chem Int Ed. 48(19):3486–3490.
  • Zhao H, Baker GA, Holmes S. 2011. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org Biomol Chem. 9(6):1908–1916.
  • Zhao B-Y, Xu P, Yang F-X, Wu H, Zong M-H, Lou W-Y. 2015. Biocompatible deep eutectic solvents based on choline chloride: characterization and application to the extraction of rutin from Sophora japonica. ACS Sustainable Chem Eng. 3(11):2746–2755.
  • Zhaojie M, Ming Z, Shengnan W, Xiaojia B, Hatch GM, Jingkai G, Li C. 2014. Amorphous solid dispersion of berberine with absorption enhancer demonstrates a remarkable hypoglycemic effect via improving its bioavailability. Int J Pharm. 467(1–2):50–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.