167
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Mitochondrial targeted doxorubicin derivatives delivered by ROS-responsive nanocarriers to breast tumor for overcoming of multidrug resistance

, , , , , , , , , , , , & show all
Pages 21-29 | Received 10 Apr 2020, Accepted 30 Sep 2020, Published online: 18 Oct 2020

References

  • Anirudha S, Michael C, Unterman SA, Wepasnick KA, Peter MD, Elisseeff JH. 2014. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat Mater. 13(10):988–995.
  • Bhola PD, Letai A. 2016. Mitochondria – judges and executioners of cell death sentences. Mol Cell. 61(5):695–704.
  • Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP. 2012. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release. 159(3):393–402.
  • Chen W, Shi K, Chu B, Wei X, Qian Z. 2019. Mitochondrial surface engineering for multidrug resistance reversal. Nano Lett. 19:2905.
  • Choi JT, Park SJ, Park JH. 2018. Microneedles containing cross-linked hyaluronic acid particulates for control of degradation and swelling behaviour after administration into skin. J Drug Target. 26:1–28.
  • Choi KY, Han HS, Lee ES, Shin JM, Almquist BD, Lee DS, Park JH. 2019. Hyaluronic acid-based activatable nanomaterials for stimuli-responsive imaging and therapeutics: beyond CD44-mediated drug delivery. Adv Mater. 31(34):1803549.
  • Dei S, Braconi L, Trezza A, Menicatti M, Contino M, Coronnello M, Chiaramonte N, Manetti D, Perrone MG, Romanelli MN. 2019. Modulation of the spacer in N,N-bis(alkanol)amine aryl ester heterodimers led to the discovery of a series of highly potent P-glycoprotein-based multidrug-resistance (MDR) modulators. Eur J Med Chem. 172:71–94.
  • DeSantis CE, Ma J, Goding Sauer A, Newman LA, Jemal A. 2017. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin. 67(6):439–448.
  • Desantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Sauer AG, Jemal A, Siegel RL. 2019. Breast cancer statistics, 2019. CA Cancer J Clin. 69(Suppl 12):7–34.
  • Du D, Xuan WK, Neuberger A, Veen HW, Van Pos KM, Piddock LV, Luisi BF. 2018. Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol. 16(9):523–539.
  • Engmann NJ, Golmakani MK, Miglioretti DL, Sprague BL, Kerlikowske K, for the Breast Cancer Surveillance Consortium. 2017. Population-attributable risk proportion of clinical risk factors for breast cancer. JAMA Oncol. 3(9):1228.
  • Forrest RA, Swift LP, Rephaeli A, Nudelman A, Kimura KI, Phillips DR, Cutts SM. 2012. Activation of DNA damage response pathways as a consequence of anthracycline-DNA adduct formation. Biochem Pharmacol. 83(12):1602–1612.
  • Gazzano E, Buondonno I, Marengo A, Rolando B, Chegaev K, Kopecka J, Saponara S, Sorge M, Hattinger CM, Gasco A. 2019. Hyaluronated liposomes containing H2S-releasing doxorubicin are effective against P-glycoprotein-positive/doxorubicin-resistant osteosarcoma cells and xenografts. Cancer Lett. 456:29–39.
  • Geldenhuys W, Wehrung D, Groshev A, Hirani A, Sutariya V. 2015. Brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles for brain cancers. Pharm Dev Technol. 20(4):497–506.
  • Gergely S, Jill KP, Joseph AL, Catherine B-G, Michael MG. 2006. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 5(3):219–234.
  • Giovanna P, Fabio Salvatore P, Antonella A, Calogero F, Pasquale P, Gaetano G. 2010. Self-assembled amphiphilic hyaluronic acid graft copolymers for targeted release of antitumoral drug. J Drug Target. 18(4):264–276.
  • Gottesman MM, Tito F, Bates SE. 2002. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2(1):48–58.
  • Guo C, Yang X, Yu P, Chen X, Haijun Y. 2015. Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater 14:115–124.
  • Hai ND, Jung Seok L, Woo BJ, Jong Hoon C, Yunki L, Joo Young S, Ki Dong P. 2015. Targeted doxorubicin nanotherapy strongly suppressing growth of multidrug resistant tumor in mice. Int J Pharm. 495(1):329–335.
  • Han K, Zhu JY, Jia HZ, Wang SB, Li SY, Zhang XZ, Han H. 2016. Mitochondria-targeted chimeric peptide for trinitarian overcoming of drug resistance. ACS Appl Mater Interfaces. 8(38):25060–25068.
  • Han M, Vakili MR, Soleymani AH, Molavi O, Lai R, Lavasanifar A. 2014. Mitochondrial delivery of doxorubicin via triphenylphosphine modification for overcoming drug resistance in MDA-MB-435/DOX cells. Mol Pharm. 11(8):2640–2649.
  • Higgins CF. 2007. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 446(7137):749–757.
  • Huacheng H, Cattran AW, Tu N, Anna-Liisa N, Peisheng X. 2014. Triple-responsive expansile nanogel for tumor and mitochondria targeted photosensitizer delivery. Biomaterials. 35(35):9546–9553.
  • Huan M, Monty L, Tian X, Zongxi L, Zhaoxia J, Zink JI, Nel AE. 2010. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano. 4(8):4539–4550.
  • Huang EH, Tucker SL, Strom EA, McNeese MD, Kuerer HM, Buzdar AU, Valero V, Perkins GH, Schechter NR, Hunt KK, et al. 2004. Postmastectomy radiation improves local-regional control and survival for selected patients with locally advanced breast cancer treated with neoadjuvant chemotherapy and mastectomy. JCO. 22(23):4691–4699.
  • Kou L, Sun R, Bhutia YD, Yao Q, Chen R. 2018. Emerging advances in P-glycoprotein inhibitory nanomaterials for drug delivery. Expert Opin Drug Deliv. 15(9):1–11.
  • Li J, Zhang B, Yue C, Wu J, Zhao L, Sun D, Wang R. 2017. Strategies to release doxorubicin from doxorubicin delivery vehicles. J Drug Target. 26(1):1–18.
  • Li R, Wu R, Zhao L, Wu M, Yang L, Zou H. 2010. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano. 4(3):1399–1408.
  • Li WQ, Wang Z, Hao S, He H, Wan Y, Zhu C, Sun LP, Cheng G, Zheng SY. 2017. Mitochondria-targeting polydopamine nanoparticles to deliver doxorubicin for overcoming drug resistance. ACS Appl Mater Interfaces. 9(20):16793–16802.
  • Lindgren M, Rosenthal-Aizman K, Saar K, Eiríksdóttir E, Jiang Y, Sassian M, Östlund P, Hällbrink M, Langel Ü. 2006. Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol. 71(4):416–425.
  • Liu H-N, Guo N-N, Wang T-T, Guo W-W, Lin M-T, Huang-Fu M-Y, Vakili MR, Xu W-H, Chen J-J, Wei Q-C, et al. 2018. Mitochondrial targeted doxorubicin-triphenylphosphonium delivered by hyaluronic acid modified and pH responsive nanocarriers to breast tumor: in vitro and in vivo studies. Mol Pharm. 15(3):882–891.
  • Luo CQ, Xing L, Cui PF, Qiao J, Bin He YJ, Chen BA, Jin L, Jiang HL. 2017. Curcumin-coordinated nanoparticles with improved stability for reactive oxygen species-responsive drug delivery in lung cancer therapy. Int J Nanomed. 12:855–869.
  • Modica-Napolitano JS, Weissig V. 2015. Treatment strategies that enhance the efficacy and selectivity of mitochondria-targeted anticancer agents. Int J Mol Sci. 16(8):17394–17421.
  • Patel NR, Rathi A, Mongayt D, Torchilin VP. 2011. Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int J Pharm. 416(1):296–299.
  • Pereverzeva E, Treschalin I, Treschalin M, Arantseva D, Ermolenko Y, Kumskova N, Maksimenko O, Balabanyan V, Kreuter J, Gelperina S. 2019. Toxicological study of doxorubicin-loaded PLGA nanoparticles for the treatment of glioblastoma. Int J Pharm. 109:759–767.
  • Qu C, Li J, Zhou Y, Yang S, Chen W, Fang L, You B, Yang L, Zhang X. 2018. Targeted delivery of doxorubicin via CD147-mediated ROS/pH dual-sensitive nanomicelles for the efficient therapy of hepatocellular carcinoma. Aaps J. 20(2):34.
  • Rocha FBC, Falcone AB, Buzaid AC, Pimenta JM, Schvartsman G, Frasson AL. 2018. Neoadjuvant therapy for breast cancer treatment: an expert panel recommendation from the Brazilian Society of Breast Surgeons 2018. Breast Cancer Res Treat. 172(2):265–272.
  • Rosmalen Van A, Cullinane C, Cutts SM, Phillips DR. 1995. Stability of adriamycin-induced DNA adducts and interstrand crosslinks. Nucleic Acids Res. 23(1):42–50.
  • Shi M, Zhang J, Li X, Pan S, Li J, Yang C, Hu H, Qiao M, Chen D, Zhao X. 2018. Mitochondria-targeted delivery of doxorubicin to enhance antitumor activity with HER-2 peptide-mediated multifunctional pH-sensitive DQAsomes. Int J Nanomed. 13:4209–4226.
  • Siegel RL, Jemal A, Wender RC, Gansler T, Ma J, Brawley OW. 2018. An assessment of progress in cancer control. CA Cancer J Clin. 68(5):329–339.
  • Srivastava A, Amreddy N, Babu A, Panneerselvam J, Mehta M, Muralidharan R, Chen A, Zhao YD, Razaq M, Riedinger N, et al. 2016. Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci Rep. 6(1):38541.
  • Sun X, Nomoto T, Takemoto H, Matsui M, Guo H, Sun Y, Miura Y, Nishiyama N. 2020. Potential urinary monitoring of the enhanced permeability and retention effect using MMP-2-responsive poly (ethylene glycol) derivatives. J Control Release. doi:10.1016/j.jconrel.2020.09.004
  • Tanrıverdi ST, Cheaburu-Yilmaz CN, Carbone S, Özer Ö. 2018. Preparation and in vitro evaluation of melatonin-loaded HA/PVA gel formulations. Pharm Dev Technol. 23(8):815–825.
  • Tian Y, Zhang H, Qin Y, Li D, Liu Y, Wang H, Li G. 2018. Overcoming drug-resistant lung cancer by paclitaxel-loaded hyaluronic acid-coated liposomes targeted to mitochondria. Drug Dev Ind Pharm. 44(12):1–32.
  • Wang H, Gao Z, Liu X, Agarwal P, Zhao S, Conroy DW, Ji G, Yu J, Jaroniec CP, Liu Z, et al. 2018. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat Commun. 9(1):562.
  • Wang Y, Li L, Zhao W, Dou Y, An H, Tao H, Xu X, Jia Y, Lu S, Zhang J, et al. 2018. Targeted therapy of atherosclerosis by a broad-spectrum reactive oxygen species scavenging nanoparticle with intrinsic anti-inflammatory activity . ACS Nano. 12(9):8943–8960.
  • Wang Y, Gao F, Jiang X, Zhao X, Wang Y, Kuai Q, Nie G, He M, Pan Y, Shi W, et al. 2019. Co-delivery of gemcitabine and Mcl-1 SiRNA via cationic liposome-based system enhances the efficacy of chemotherapy in pancreatic cancer. J Biomed Nanotechnol. 15(5):966–978.
  • Wei Y, Gao L, Wang L, Shi L, Wei E, Zhou B, Zhou L, Ge B. 2017. Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy. Drug Deliv. 24(1):681–691.
  • Xia X, Yang X, Huang P, Yan D. 2020. ROS-responsive nanoparticles formed from RGD-epothilone B conjugate for targeted cancer therapy. ACS Appl Mater Interfaces. 12(16):18301–18308.
  • Xing L, Lyu JY, Yang Y, Cui PF, Gu LQ, Qiao JB, He YJ, Zhang TQ, Sun M, Lu JJ. 2017. pH-responsive de-PEGylated nanoparticles based on triphenylphosphine-quercetin self-assemblies for mitochondria-targeted cancer therapy. Chem Commun. 53(62):8790–8793.
  • Xu Y, Wang S, Chan HF, Liu Y, Li H, He C, Li Z, Chen M. 2017. Triphenylphosphonium-modified poly(ethylene glycol)-poly(ε-caprolactone) micelles for mitochondria- targeted gambogic acid delivery. Int J Pharm. 522(1–2):21–33.
  • Yang Z, Chen Q, Chen J, Dong Z, Zhang R, Liu J, Liu Z. 2018. Tumor‐pH‐responsive dissociable albumin–tamoxifen nanocomplexes enabling efficient tumor penetration and hypoxia relief for enhanced cancer photodynamic therapy. Small. 14(49):1803262.
  • Yu P, Yu H, Guo C, Cui Z, Chen X, Yin Q, Zhang P, Yang X, Cui H, Li Y. 2015. Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater. 14:115–124.
  • Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, Yeh ET. 2012. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 18(11):1639–1642.
  • Zhang S, Zhu P, He J, Dong S, Li P, Zhang CY, Ma T. 2020. TME‐responsive polyprodrug micelles for multistage delivery of doxorubicin with improved cancer therapeutic efficacy in rodents. Adv Healthcare Mater. 9(18):2000387.
  • Zhang Y, He P, Liu X, Yang H, Zhang H, Xiao C, Chen X. 2019. A PEGylated alternating copolymer with oxidation-sensitive phenylboronic ester pendants for anticancer drug delivery. Biomater Sci. 7(9):3898–3905.
  • Zhang Y, Zhang C, Chen J, Liu L, Hu M, Li J, Bi H. 2017. A trackable mitochondria-targeting nanomicellar loaded with doxorubicin for overcoming drug resistance. ACS Appl Mater Interfaces. 9(30):25152–25163.
  • Zhang Z, Liu Z, Ma L, Jiang S, Wang Y, Yu H, Yin Q, Cui J, Li Y. 2013. Reversal of multidrug resistance by mitochondrial targeted self-assembled nanocarrier based on stearylamine. Mol Pharm. 10(6):2426–2434.
  • Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. 2017. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem Rev. 117(15):10043–10120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.