204
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Co-delivery of CPP decorated doxorubicin and CPP decorated siRNA by NGR-modified nanobubbles for improving anticancer therapy

, , , , &
Pages 634-646 | Received 12 Oct 2020, Accepted 30 Mar 2021, Published online: 15 Apr 2021

References

  • Banerjee S, Ganapathi R, Ghosh L, Yu CL. 1992. Down-regulation of ras and myc expression associated with mdr-1 overexpression in adriamycin-resistant tumor cells. Cell Mol Biol. 38(6):561–570.
  • Bart G, Heleen D, Stefaan CDS, Ine L. 2012. Crucial factors and emerging concepts in ultrasound-triggered drug delivery. J Control Release. 164:248–255.
  • Chen Y, Bathula SR, Li J, Huang L. 2010. Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer. J Biol Chem. 285(29):22639–22650.
  • Chen YC, Wu JZ, Huang L. 2010. Nanoparticles targeted with NGR motif deliver c-myc siRNA and doxorubicin for anticancer therapy. Mol Ther. 18(4):828–834.
  • Cosgrove D. 2006. Ultrasound contrast agents: an overview. Eur J Radiol. 60(3):324–330.
  • Dromi S, Frenkel V, Luk A, Traughber B, Angstadt M, Bur M, Poff J, Xie J, Libutti SK, Li KCP, et al. 2007. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res. 13(9):2722–2727.
  • Du LN, Jin YG, Zhou WY, Zhao JY. 2011. Ultrasound-triggered drug release and enhanced anticancer effect of doxorubicin-loaded poly(D,L-lactide-co-glycolide)-methoxy-poly(ethylene glycol) nanodroplets. Ultrasound Med Biol. 37(8):1252–1258.
  • Gao Y, Tang MT, Euphemia L, Darren S, Andrew S, Wu ZM. 2020. Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Adv. 10(32):19089–19105.
  • He Y, Zhang J, Zhang J, Yuan Y. 2000. The role of c-Myc in regulating mdr1 gene expression in tumor cell line KB. Chin Med J. 113(9):848–851.
  • Horie S, Watanabe Y, Ono M, Mori S, Kodama T. 2011. Evaluation of antitumor effects following tumor necrosis factor-α gene delivery using nanobubbles and ultrasound. Cancer Sci. 102(11):2082–2089.
  • Huang Y, Jiang Y, Wang H, Wang J, Shin MC, Byun Y, He H, Liang Y, Yang VC. 2013. Curb challenges of the “Trojan Horse” approach: smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv Drug Deliv Rev. 65(10):1299–1315.
  • Jia HZ, Zhang W, Zhu JY, Yang B, Chen S, Chen G, Zhao YF, Feng J, Zhang XZ. 2015. Hyperbranched-hyperbranched polymeric nanoassembly to mediate controllable co-delivery of siRNA and drug for synergistic tumor therapy. J Control Release. 216:9–17.
  • Li L, Hu X, Zhang M, Ma S, Yu F, Zhao S, Liu N, Wang Z, Wang Y, Guan H, et al. 2017. Dual tumor-targeting nanocarrier system for siRNA delivery based on pRNA and modified chitosan. Mol Ther Nucl Acids. 8:169–183.
  • Li JM, Wang YY, Zhao MX, Tan CP, Li YQ, Le XY, Ji LN, Mao ZW. 2012. Multifunctional QD-based co-delivery of siRNA and doxorubicin to HeLa cells for reversal of multidrug resistance and real-time tracking. Biomaterials. 33(9):2780–2790.
  • Lin W, Xie XY, Deng JP, Liu H, Chen Y, Fu XD, Liu H, Yang Y. 2016. Cell-penetrating peptide-doxorubicin conjugate loaded NGR-modified nanobubbles for ultrasound triggered drug delivery. J Drug Target. 24(2):134–146.
  • Mano M, Teodosio C, Paiva A, Simoes S, Pedroso de Lima MC. 2005. On the mechanisms of the internalization of S4(13)-PV cell-penetrating peptide. Biochem J. 390(2):603–612.
  • Mar C, Nicholas AP. 2012. Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance. Nano Today. 7:367–379.
  • Nakamura Y, Sato H, Motokura T. 2006. Development of multidrug resistance due to multiple factors including P-glycoprotein overexpression under K-selection after MYC and HRAS oncogene activation. Int J Cancer. 118(10):2448–2454.
  • Negussie AH, Miller JL, Reddy G, Drake SK, Wood BJ, Dreher MR. 2010. Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J Control Release. 143(2):265–273.
  • Qu MH, Zeng RF, Fang S, Dai QS, Li HP, Long JT. 2014. Liposome-based co-delivery of siRNA and docetaxel for the synergistic treatment of lung cancer. Int J Pharm. 474(1–2):112–122.
  • Ranjita M, Manasi D, Bhabani SS, Sanjeeb KS. 2014. Reversal of multidrug resistance in vitro by co-delivery of MDR1 targeting siRNA and doxorubicin using a novel cationic poly (lactide-co-glycolide) nanoformulation. Int J Pharm. 475:372–384.
  • Seyed Mohammad GH, Mahmoud RJ, Mahdi H, Tannaz J, Amirhossein S. 2020. Harnessing CD47 mimicry to inhibit phagocytic clearance and enhance anti-tumor efficacy of nanoliposomal doxorubicin. Expert Opin Drug Del. 17(7):1049–1058.
  • Tang S, Yin Q, Zhang Z, Gu W, Chen L, Yu H, Huang YZ, Chen XZ, Xu MX, Li YP. 2014. Co-delivery of doxorubicin and RNA using pH-sensitive poly (β-amino ester) nanoparticles for reversal of multidrug resistance of breast cancer. Biomaterials. 35(23):6047–6059.
  • Unger EC, Hersh E, Vannan M, Matsunaga TO, McCreery T. 2001. Local drug and gene delivery through microbubbles. Prog Cardiovasc Dis. 44(1):45–54.
  • Wei W, Lv PP, Chen XM, Yue ZG, Fu Q, Liu SY, Yue H, Ma GH. 2013. Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression. Biomaterials. 34(15):3912–3923.
  • Xie F, Li ZP, Wang HW, Fei X, Jiao ZY, Tang WB, Tang J, Luo YK. 2016. Evaluation of liver ischemia-reperfusion injury in rabbits using a nanoscale ultrasound contrast agent targeting ICAM-1. PLoS One. 11(4):e0153805.
  • Xie XY, Yang YF, Lin W, Liu H, Liu H, Yang Y, Chen Y, Fu XD, Deng JP. 2015. Cell-penetrating peptide-siRNA conjugate loaded YSA-modified nanobubbles for ultrasound triggered siRNA delivery. Colloids Surf B Biointerfaces. 136:641–650.
  • Yang YF, Yang Y, Xie XY, Cai XS, Zhang H, Gong W, Wang ZY, Mei XG. 2014. PEGylated liposomes with NGR ligand and heat-activable cell penetrating peptide doxorubicin conjugate for tumor-specific therapy. Biomaterials. 35(14):4368–4314.
  • Yang Y, Yang Y, Xie X, Wang Z, Gong W, Zhang H, Li Y, Yu FL, Li ZP, Mei XG. 2015. Dual-modified liposomes with a two-photon-sensitive cell penetrating peptide and NGR ligand for siRNA targeting delivery. Biomaterials. 48:84–96.
  • Yaprak D, Ufuk G. 2011. Reversal of multidrug resistance by small interfering RNA (siRNA) in doxorubicin-resistant MCF-7 breast cancer cells. Biomed Pharmacother. 65:85–89.
  • Yin TH, Wang P, Li JG, Zheng RQ, Zheng BW, Cheng D, Li RT, Lai JY, Shuai XT. 2013. Ultrasound-sensitive siRNA-loaded nanobubbles formed by heteroassembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials. 34(18):4532–4543.
  • Zarnitsyn V, Rostad CA, Prausnitz MR. 2008. Modeling transmembrane transport through cell membrane wounds created by acoustic cavitation. Biophys J. 95(9):4124–4138.
  • Zheng WJ, Cao CW, Liu YN, Yu QQ, Zheng CP, Sun DD, Ren XF, Liu J. 2015. Multifunctional polyamidoamine-modified selenium nanoparticles dual-delivering siRNA and cisplatin to A549/DDP cells for reversal multidrug resistance. Acta Biomater. 11:368–380.
  • Zheng WJ, Yin TT, Chen QC, Qin XY, Huang XQ, Zhao S, Xu TY, Chen LM, Liu J. 2016. Co-delivery of Se nanoparticles and pooled SiRNAs for overcoming drug resistance mediated by P-glycoprotein and class III b-tubulin in drugresistant breast cancers. Acta Biomater. 31:197–210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.