370
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A promising dual-drug targeted delivery system in cancer therapy: nanocomplexes of folate–apoferritin-conjugated cationic solid lipid nanoparticles

, , , , &
Pages 673-681 | Received 30 Mar 2020, Accepted 17 Apr 2021, Published online: 30 Apr 2021

References

  • Ahmad R, Deng Y, Singh R, Hussain M, Shah MAA, Elingarami S, He N, Sun Y. 2018. Cutting edge protein and carbohydrate-based materials for anticancer drug delivery. J Biomed Nanotechnol. 14(1):20–43.
  • Alqaraghuli J, Gomhor H, Kashanian S, Rafipour R, Mansouri K. 2019. Dopamine-conjugated apoferritin protein nanocage for the dual-targeting delivery of epirubicin. Nanomed J. 6(4):250–257.
  • Arkan E, Azandaryani AH, Moradipour P, Behbood L. 2018. Biomacromolecular based fibers in nanomedicine: a combination of drug delivery and tissue engineering. CPB. 18(11):909–924.
  • Azandaryani AH, Kashanian S, Derakhshandeh K. 2017. Folate conjugated hybrid nanocarrier for targeted letrozole delivery in breast cancer treatment. Pharm Res. 34(12):2798–2808.
  • Azandaryani AH, Kashanian S, Tosaramandani TJ. 2019. Recent insights into effective nanomaterials and biomacromolecules conjugation in advanced drug targeting. CPB. 20(7):526–541.
  • Bayón-Cordero L, Alkorta I, Arana L. 2019. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel). 9(3):474.
  • Beik J, Jafariyan M, Montazerabadi A, Ghadimi-Daresajini A, Tarighi P, Mahmoudabadi A, Ghaznavi H, Shakeri-Zadeh A. 2018. The benefits of folic acid-modified gold nanoparticles in CT-based molecular imaging: radiation dose reduction and image contrast enhancement. Artif Cells Nanomed Biotechnol. 46(8):1993–2001.
  • Belletti D, Pederzoli F, Forni F, Vandelli MA, Tosi G, Ruozi B. 2017. Protein cage nanostructure as drug delivery system: magnifying glass on apoferritin. Expert Opin Drug Deliv. 14(7):825–840.
  • Blazkova I, Nguyen H, Dostalova S, Kopel P, Stanisavljevic M, Vaculovicova M, Stiborova M, Eckschlager T, Kizek R, Adam V. 2013. Apoferritin modified magnetic particles as doxorubicin carriers for anticancer drug delivery. IJMS. 14(7):13391–13402.
  • Bouzinab k, Summers h, Stevens MF, Moody CJ, Thomas NR, Gershkovich P, Weston N, Ashford MB, Bradshaw TD, Turyanska L. 2020. Delivery of temozolomide and N3-propargyl analog to brain tumors using an apoferritin nanocage. ACS Appl Mater Interf. 12(11):12609–12617.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1-2):248–254.
  • Chen C, Hu H, Qiao M, Zhao X, Wang Y, Chen K, Chen D. 2015. Anti-tumor activity of paclitaxel through dual-targeting lipoprotein-mimicking nanocarrier. J Drug Target. 23(4):311–322.
  • Cheng X, Fan K, Wang L, Ying X, Sanders AJ, Guo T, Xing X, Zhou M, Du H, Hu Y, et al. 2020. TfR1 binding with H-ferritin nanocarrier achieves prognostic diagnosis and enhances the therapeutic efficacy in clinical gastric cancer. Cell Death Dis. 11(2):1–13.
  • Crich SG, Cadenazzi M, Lanzardo S, Conti L, Ruiu R, Alberti D, Cavallo F, Cutrin JC, Aime S. 2015. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells. Nanoscale. 7(15):6527–6533.
  • Danesi R, Fogli S, Gennari A, Conte P, Del TM. 2002. Pharmacokinetic-pharmacodynamic relationships of the anthracycline anticancer drugs. Clin Pharmacokinet. 41(6):431–444.
  • Dostalova S, Vasickova K, Hynek D, Krizkova S, Richtera L, Vaculovicova M, Eckschlager T, Stiborova M, Heger Z, Adam V. 2017. Apoferritin as an ubiquitous nanocarrier with excellent shelf life. IJN. 12:2265–2278.
  • Dostalova S, Vazzana M, Vaculovicova M, Adam V, Kizek R. 2015. Interaction of nanocarrier apoferritin with cytotoxic drug molecules. J Metallom Nanotechnol. 3:71–80.
  • Enache M, Toader A, Enache M. 2016. Mitoxantrone-surfactant interactions: a physicochemical overview. Molecules. 21(10):1356.
  • Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, Song L, Liang M, Yan X. 2012. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nature Nanotech. 7(7):459–464.
  • Fong Y, Chen C-H, Chen J-P. 2017. Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy. Nanomaterials. 7(11):388.
  • Ghosh S, Mohapatra S, Thomas A, Bhunia D, Saha A, Das G, Jana B, Ghosh S. 2016. Apoferritin nanocage delivers combination of microtubule and nucleus targeting anticancer drugs. ACS Appl Mater Interf. 8(45):30824–30832.
  • Alqaraghuli GJH, Kashanian S, Rafipour R, Mahdavian E, Mansouri K. 2018. Development and characterization of folic acid-functionalized apoferritin as a delivery vehicle for epirubicin against MCF-7 breast cancer cells. Artif Cells Nanomed Biotechnol. 46(sup3):S847–S854.
  • Gupta Y, Jain A, Jain SK. 2010. Transferrin‐conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J Pharmacy Pharmacol. 59(7):935–940.
  • Hao J, Tong T, Jin K, Zhuang Q, Han T, Bi Y, Wang J, Wang X. 2017. Folic acid-functionalized drug delivery platform of resveratrol based on pluronic 127/D-α-tocopheryl polyethylene glycol 1000 succinate mixed micelles. IJN. 12:2279–2292.
  • Heger Z, Skalickova S, Zitka O, Adam V, Kizek R. 2014. Apoferritin applications in nanomedicine. Nanomedicine. 9(14):2233–2245.
  • Heister E, Neves V, Lamprecht C, Silva SRP, Coley HM, McFadden J. 2012. Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. Carbon. 50(2):622–632.
  • Jain SK, Chaurasiya A, Gupta Y, Jain A, Dagur P, Joshi B, Katoch VM. 2008. Development and characterization of 5-FU bearing ferritin appended solid lipid nanoparticles for tumour targeting. J Microencapsulation. 25(5):289–297.
  • Jose S, Anju S, Cinu T, Aleykutty N, Thomas S, Souto E. 2014. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int J Pharm. 474(1-2):6–13.
  • Kashanian S, Azandaryani AH, Derakhshandeh K. 2011. New surface-modified solid lipid nanoparticles using N-glutaryl phosphatidylethanolamine as the outer shell. Int J Nanomed. 6:2393.
  • Kashanian S, Tarighat FA, Rafipour R, Abbasi-Tarighat M. 2012. Biomimetic synthesis and characterization of cobalt nanoparticles using apoferritin, and investigation of direct electron transfer of Co (NPs)–ferritin at modified glassy carbon electrode to design a novel nanobiosensor. Mol Biol Rep. 39(9):8793–8802.
  • Khademi S, Sarkar S, Shakeri-Zadeh A, Attaran N, Kharrazi S, Ay MR, Ghadiri H. 2018. Folic acid-cysteamine modified gold nanoparticle as a nanoprobe for targeted computed tomography imaging of cancer cells. Mater Sci Eng C. 89:182–193.
  • Kilic MA, Ozlu E, Calis S. 2012. A novel protein-based anticancer drug encapsulating nanosphere: apoferritin-doxorubicin complex. J Biomed Nanotechnol. 8(3):508–514.
  • Kim T-H, Oh J-M. 2016. Dual nutraceutical nanohybrids of folic acid and calcium containing layered double hydroxides. J Solid State Chem. 233:125–132.
  • Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. 2009. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release. 133(3):238–244.
  • Li L, Fang CJ, Ryan JC, Niemi EC, Lebrón JA, Björkman PJ, Arase H, Torti FM, Torti SV, Nakamura MC, et al. 2010. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci USA. 107(8):3505–3510.
  • Lotocki V, Yazdani H, Zhang Q, Gran ER, Nyrko A, Maysinger D, Kakkar A. 2021. Miktoarm star polymers with environment-selective ROS/GSH responsive locations: from modular synthesis to tuned drug release through micellar partial corona shedding and/or core disassembly. Macromol Biosci. 21(2):2000305.
  • Ma P, Dong X, Swadley CL, Gupte A, Leggas M, Ledebur HC, Mumper RJ. 2009. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. J Biomed Nanotechnol. 5(2):151–161.
  • Ma N, Liu J, He W, Li Z, Luan Y, Song Y, Garg S. 2017. Folic acid-grafted bovine serum albumin decorated graphene oxide: an efficient drug carrier for targeted cancer therapy. J Colloid Interface Sci. 490:598–607.
  • Mazur A, Litt I, Shorr E. 1950. Chemical properties of ferritin and their relation to its vasodepressor activity. J Biol Chem. 187(2):473–484.
  • Montazerabadi A, Beik J, Irajirad R, Attaran N, Khaledi S, Ghaznavi H, Shakeri-Zadeh A. 2019. Folate-modified and curcumin-loaded dendritic magnetite nanocarriers for the targeted thermo-chemotherapy of cancer cells. Artif Cells Nanomed Biotechnol. 47(1):330–340.
  • Peres-Filho MJ, dos Santos AP, Nascimento TL, de Avila RI, Ferreira FS, Valadares MC, Lima EM. 2018. Antiproliferative activity and VEGF expression reduction in MCF7 and PC-3 cancer cells by paclitaxel and imatinib co-encapsulation in folate-targeted liposomes. AAPS PharmSciTech. 19(1):201–212.
  • Pooja D, Kulhari H, Kuncha M, Rachamalla SS, Adams DJ, Bansal V, Sistla R. 2016. Improving efficacy, oral bioavailability, and delivery of paclitaxel using protein-grafted solid lipid nanoparticles. Mol Pharm. 13(11):3903–3912.
  • Ren Y, Wong SM, Lim L-Y. 2007. Folic acid-conjugated protein cages of a plant virus: a novel delivery platform for doxorubicin. Bioconjugate Chem. 18(3):836–843.
  • Ridha AA, Kashanian S, Azandaryani AH, Rafipour R, Mahdavian E. 2020. New folate-modified human serum albumin conjugated to cationic lipid carriers for dual targeting of mitoxantrone against breast cancer. CPB. (4):305–315.
  • Rostami E, Kashanian S, Azandaryani AH. 2014. Preparation of solid lipid nanoparticles as drug carriers  for levothyroxine sodium with in vitro drug delivery kinetic characterization. Mol Biol Rep. 41(5):3521–3527.
  • Subedi RK, Kang KW, Choi H-K. 2009. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci. 37(3-4):508–513.
  • Xu Y, Asghar S, Gao S, Chen Z, Huang L, Yin L, Ping Q, Xiao Y. 2017. Polysaccharide-based nanoparticles for co-loading mitoxantrone and verapamil to overcome multidrug resistance in breast tumor. IJN. 12:7337–7350.
  • Yao H, Su L, Zeng M, Cao L, Zhao W, Chen C, Du B, Zhou J. 2016. Construction of magnetic-carbon-quantum-dots-probe-labeled apoferritin nanocages for bioimaging and targeted therapy. IJN. 11:4423–4438.
  • Zeinizade E, Tabei M, Shakeri-Zadeh A, Ghaznavi H, Attaran N, Komeili A, Ghalandari B, Maleki S, Kamrava SK. 2018. Selective apoptosis induction in cancer cells using folate-conjugated gold nanoparticles and controlling the laser irradiation conditions. Artif Cells Nanomed Biotechnol. 46(sup1):1026–1038.
  • Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J. 2013. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS. 7(6):4830–4837.
  • Zhou J, Chen S, Sun C, Du Q, Luo P, Du B, Yao H. 2016. A “submunition” dual-drug system based on smart hollow NaYF 4/apoferritin nanocage for upconversion imaging. RSC Adv. 6(40):33443–33454.
  • Zhou J, Yao H, Meng L, Sun C, Ye W, Du Q. 2017. A hollow NaGdF4/AFn nanosystem based on “Relay Race” release for therapy. ChemMedChem. 12(15):1191–1200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.