918
Views
11
CrossRef citations to date
0
Altmetric
Review Article

An overview of PLGA in-situ forming implants based on solvent exchange technique: effect of formulation components and characterization

, & ORCID Icon
Pages 709-728 | Received 13 Jan 2021, Accepted 14 Jun 2021, Published online: 27 Jun 2021

References

  • Agarwal P, Rupenthal ID. 2013. Injectable implants for the sustained release of protein and peptide drugs. Drug Discov Today. 18(7–8):337–349.
  • Agossa K, Delepierre A, Lizambard M, Delcourt-Debruyne E, Siepmann J, Siepmann F, Neut C. 2020. In-situ forming implants for dual controlled release of chlorhexidine and ibuprofen for periodontitis treatment: microbiological and mechanical key properties. J Drug Deliv Sci Technol. 60:101956.
  • Ahmed TA, Alharby YA, El-Helw AM, Hosny KM, El-Say KM. 2016. Depot injectable atorvastatin biodegradable in situ gel: development, optimization, in vitro, and in vivo evaluation. Drug Des Devel Ther. 10:405–415.
  • Ahmed TA, Hussain Z. 2010. Preparation of parenteral in situ gel formulation based on smart PLGA polymer: concepts to decrease initial drug burst and extend drug release. In: Rohman G, editor. Biodegradable polymers: recent developments and new perspectives. Croatia: IAPC Publishing. Chapter 9; p. 315–336.
  • Ahmed TA, Ibrahim HM, Samy AM, Kaseem A, Nutan MTH, Hussain MD. 2014. Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: in vitro release, pharmacokinetics, and stability. AAPS PharmSciTech. 15(3):772–780.
  • Alibolandi M, Alabdollah F, Sadeghi F, Mohammadi M, Abnous K, Ramezani M, Hadizadeh F. 2016. Dextran-b-poly(lactide-co-glycolide) polymersome for oral delivery of insulin: in vitro and in vivo evaluation. J Control Release. 227:58–70.
  • Al-Jawadi S, Capasso P, Sharma M. 2018. The road to market implantable drug delivery systems: a review on US FDA’s regulatory framework and quality control requirements. Pharm Dev Technol. 23(10):953–963.
  • Allahyari M, Mohit E. 2016. Peptide/protein vaccine delivery system based on PLGA particles. Hum Vaccin Immunother. 12(3):806–828.
  • Amini-Fazl MS. 2021. Biodegradation study of PLGA as an injectable in situ depot-forming implant for controlled release of paclitaxel. Polym Bull. 1–14.
  • Ashjari M, Khoee S, Mahdavian AR, Rahmatolahzadeh R. 2012. Self-assembled nanomicelles using PLGA-PEG amphiphilic block copolymer for insulin delivery: a physicochemical investigation and determination of CMC values. J Mater Sci Mater Med. 23(4):943–953.
  • Astaneh R, Erfan M, Moghimi H, Mobedi H. 2009. Changes in morphology of in situ forming PLGA implant prepared by different polymer molecular weight and its effect on release behavior. J Pharm Sci. 98(1):135–145.
  • Augusthy AR, Chandran S, Vipin KV. 2017. Design and evaluation of an in situ forming implant system of an anti-inflammatory drug. Indo Am J Pharm Res. 4(4):983–994.
  • Avgoustakis K. 2008. Polylactic-co-glycolic acid (PLGA). In: Wnek GE, Bowlin GL, editors. Encyclopedia of biomaterials and biomedical engineering. 2nd ed. New York (NY): Informa HealthCare; p. 2259–2269.
  • Bakhshi R, Vasheghani-Farahani E, Mobedi H, Jamshidi A, Khakpour M. 2006. The effect of additives on naltrexone hydrochloride release and solvent removal rate from an injectable in situ forming PLGA implant. Polym Adv Technol. 17(5):354–359.
  • Barakat SS, Nasr M, Ahmed RF, Badawy SS, Mansour S. 2017. Intranasally administered in situ gelling nanocomposite system of dimenhydrinate: preparation, characterization and pharmacodynamic applicability in chemotherapy induced emesis model. Sci Rep. 7(1):9910.
  • Behrens AM, Kim J, Hotaling N, Seppala JE, Kofinas P, Tutak W. 2016. Rapid fabrication of poly(DL-lactide) nanofiber scaffolds with tunable degradation for tissue engineering applications by air-brushing. Biomed Mater. 1(3):1–17.
  • Bisht R, Jaiswal JK, Chen Y, Jin J, Rupenthal ID. 2016. Light-responsive in situ forming injectable implants for effective drug delivery to the posterior segment of the eye. Expert Opin Drug Deliv. 13(7):953–962.
  • Bisht R, Jaiswal JK, Oliver VF, Eurtivong C, Reynisson J, Rupenthal ID. 2017. Preparation and evaluation of PLGA nanoparticle-loaded biodegradable light-responsive injectable implants as a promising platform for intravitreal drug delivery. J Drug Deliv Sci Technol. 40:142–156.
  • Bittner B, Richter W, Schmidt J. 2018. Subcutaneous administration of biotherapeutics: an overview of current challenges and opportunities. BioDrugs. 32(5):425–440.
  • Bode C, Kranz H, Siepmann F, Siepmann J. 2018. In-situ forming PLGA implants for intraocular dexamethasone delivery. Int J Pharm. 548(1):337–348.
  • Borgheti-Cardoso LN, Kooijmans SAA, Fens MHAM, Van der Meel R, Vicentini FTMC, Fantini MCA, Bentley MVLB, Schiffelers RM. 2017. In situ gelling liquid crystalline system as local siRNA delivery system. Mol Pharm. 14(5):1681–1690.
  • Browne DC, Kieselmann K. 2010. Low-level drug release-rate testing of ocular implants using USP Apparatus 4 dissolution and HPLC end analysis. Dissolution Technol. 17(1):12–14.
  • Burgess DJ, Hussain AS, Ingallinera TS, Chen ML. 2002. Assuring quality and performance of sustained and controlled release parenterals: AAPS workshop report, co-sponsored by FDA and USP. Pharm Res. 19(11):1761–1768.
  • Cabane E, Zhang X, Langowska K, Palivan CG, Meier W. 2012. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases. 7(1-4):9.
  • Camargo JA, Sapin A, Nouvel C, Daloz D, Leonard M, Bonneaux F, Six JL, Maincent P. 2013. Injectable PLA-based in situ forming implants for controlled release of Ivermectin a BCS Class II drug: solvent selection based on physico-chemical characterization. Drug Dev Ind Pharm. 39(1):146–155.
  • Chaudhary B, Verma S. 2014. Preparation and evaluation of novel in situ gels containing acyclovir for the treatment of oral herpes simplex virus infections. Sci World J. 2014:1–7.
  • Che X, Wang L, Li Q, Liu H. 2014. Injectable long-term control-released in-situ gels of hydrochloric thiothixene for the treatment of schizophrenia: preparation, in-vitro and in-vivo evaluation. Int J Pharm. 469(1):23–30.
  • Chenite A, Buschmann M, Wang D, Chaput C, Kandani N. 2001. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym. 46(1):39–47.
  • Chhabra S, Sachdeva V, Singh S. 2007. Influence of end groups on in vitro release and biological activity of lysozyme from a phase-sensitive smart polymer based in situ gel forming controlled release drug delivery system. Int J Pharm. 342(1–2):72–77.
  • D’Souza SS, DeLuca PP. 2006. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm Res. 23(3):460–474.
  • Dhir S, Saffi KA, Kamalpuria N, Mishra D. 2016. An overview of in situ gelling system. Int J Pharm Life Sci. 7(8):5135–5156.
  • Dong S, Wang S, Zheng C, Liang W, Huang Y. 2011. An in situ-forming, solid lipid/PLGA hybrid implant for long-acting antipsychotics. Soft Matter. 7(12):5873–5878.
  • Dong WY, Körber M, López Esguerra V, Bodmeier R. 2006. Stability of poly(D,L-lactide-co-glycolide) and leuprolide acetate in in-situ forming drug delivery systems. J Control Release. 115(2):158–167.
  • Dunn RL, English JP, Cowsar DR, Vanderbilt DP, inventors; Southern Research Institute, assignee. 1990. Jul 03. Biodegradable in situ forming implants and methods of producing the same. United States patent US 4,938,763.
  • Dunn RL, English JP, Cowsar DR, Vanderbilt DP, inventors; Atrix Laboratories Inc, assignee. 1994. Jan 11. Biodegradable in situ forming implants and methods of producing the same. United States patent US 5,278,201.
  • Dutta K, Das R, Ling J, Monibas RM, Carballo-Jane E, Kekec A, Feng DD, Lin S, Mu J, Saklatvala R, et al. 2020. In situ forming injectable thermoresponsive hydrogels for controlled delivery of biomacromolecules. ACS Omega. 5(28):17531–17542.
  • El-Hefian EA, Yahaya AH. 2010. Rheological study of chitosan and its blends: an overview. Maejo Int J Sci Technol. 4(02):210–220.
  • Eliaz R, Szoka F. 2002. Robust and prolonged gene expression from injectable polymeric implants. Gene Ther. 9(18):1230–1237.
  • Elmotasem H, Awad GE. 2020. A stepwise optimization strategy to formulate in situ gelling formulations comprising fluconazole-hydroxypropyl-beta-cyclodextrin complex loaded niosomal vesicles and Eudragit nanoparticles for enhanced antifungal activity and prolonged ocular delivery. Asian J Pharm Sci. 15(5):617–636.
  • Elsawy MA, Kim KH, Park JW, Deep A. 2017. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sustain Energy Rev. 79:1346–1352.
  • Enayati M, Mobedi H, Hojjati-Emami S, Mirzadeh H, Jafari-Nodoushan M. 2017. In situ forming PLGA implant for 90 days controlled release of leuprolide acetate for treatment of prostate cancer. Polym Adv Technol. 28(7):867–875.
  • Erbetta CDC, Alves RJ, Resende JM, Freitas RFDS, Sousa RGD. 2012. Synthesis and characterization of poly(d,l-lactide co-glycolide) copolymer. J Biomater Nanobiotechnol. 3(2):208–225.
  • Farhangi M, Dadashzadeh S, Bolourchian N. 2017. Biodegradable gelatin microspheres as controlled release intraarticular delivery system: the effect of formulation variables. Indian J Pharm Sci. 79(1):105–112.
  • [FDA] Food and Drug Administration . 2003. United States: Food and Drug Administration. [accessed 2021 May 28]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21346_RisperdalTOC.cfm
  • [FDA] Food and Drug Administration . 2016. United States: Food and Drug Administration. [accessed 2021 May 28]. https://www.fda.gov/drugs/guidance-compliance-regulatory-information/postmarket-requirements-and-commitments
  • [FDA] Food and Drug Administration . 2018a. United States: Food and Drug Administration. [accessed 2021 May 28]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210655Orig1s000TOC.cfm
  • [FDA] Food and Drug Administration . 2018b. United States: Food and Drug Administration. [accessed 2021 May 28]. https://www.fda.gov/drugs/guidance-compliance-regulatory-information/surveillance
  • Forouzandeh F, Zhu X, Ahamed NN, Walton JP, Frisina RD, Borkholder DA. 2019. Modular microreservoir for active implantable drug delivery. BioRxiv. 1–18.
  • Fredenberg S, Wahlgren M, Reslow M, Axelsson A. 2011. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems – a review. Int J Pharm. 415(1–2):34–52.
  • Gad HA. 2016. Simvastatin in-situ forming implants: preparation and characterization. Int J Pharm Pharm Sci. 7(4):44–57.
  • Gentile P, Chiono V, Carmagnola I, Hatton PV. 2014. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 15(3):3640–3659.
  • Gu P, Wusiman A, Zhang Y, Liu Z, Bo R, Hu Y, Liu J, Wang D. 2019. Rational design of PLGA nanoparticle vaccine delivery systems to improve immune responses. Mol Pharm. 16(12):5000–5012.
  • Gulati N, Gupta H. 2011. Parenteral drug delivery: a review. Recent Pat Drug Deliv Formul. 5(2):133–145.
  • Güven UM, Berkman MS, Şenel B, Yazan Y. 2019. Development and in vitro/in vivo evaluation of thermo-sensitive in situ gelling systems for ocular allergy. Braz J Pharm Sci. 55:e17511.
  • Gyulai G, Penzes CB, Mohai M, Lohner T, Petrik P, Kurunczi S, Kiss E. 2011. Interfacial properties of hydrophilized poly(lactic-co-glycolic acid) layers with various thicknesses. J Colloid Interface Sci. 362(2):600–606.
  • Hadar J, Skidmore S, Garner J, Park H, Park K, Wang Y, Qin B, Jiang X. 2019. Characterization of branched poly(lactide-co-glycolide) polymers used in injectable, long-acting formulations. J Control Release. 304:75–89.
  • Haggag Y, Abdel-Wahab Y, Ojo O, Osman M, El-Gizawy S, El-Tanani M, Faheem A, McCarron P. 2016. Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG. Int J Pharm. 499(1–2):236–246.
  • Haggag Y, Elshikh M, El-Tanani M, Bannat IM, McCarron P, Tambuwala MM. 2020. Nanoencapsulation of sophorolipids in PEGylated poly(lactide-co-glycolide) as a novel approach to target colon carcinoma in the murine model. Drug Deliv Transl Res. 10(5):1353–1366.
  • Haggag YA, Faheem AM, Tambuwala MM, Osman MA, El-Gizawy SA, O’Hagan B, Irwin N, McCarron PA. 2018. Effect of poly(ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure. Pharm Dev Technol. 23(4):370–381.
  • Haggag YA, Ibrahim RR, Hafiz AA. 2020. Design, formulation and in vivo evaluation of novel honokiol-loaded PEGylated PLGA nanocapsules for treatment of breast cancer. Int J Nanomedicine. 15:1625–1642.
  • Haider M, Elsayed I, Ahmed IS, Fares AR. 2021. In situ-forming microparticles for controlled release of rivastigmine: in vitro optimization and in vivo evaluation. Pharmaceuticals. 14(1):66.
  • Hajavi J, Ebrahimian M, Sankian M, Khakzad MR, Hashemi M. 2018. Optimization of PLGA formulation containing protein or peptide-based antigen: recent advances. J Biomed Mater Res A. 106(9):2540–2551.
  • Hatefi A, Amsden B. 2002. Biodegradable injectable in situ forming drug delivery systems. J Control Release. 80(1–3):9–28.
  • Hines DJ, Kaplan DL. 2013. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights . Crit Rev Ther Drug Carrier Syst. 30(3):257–276.
  • Homayun B, Lin X, Choi H. 2019. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics. 11(3):129.
  • Hosny KM, Rizg WY. 2018. Quality by design approach to optimize the formulation variables influencing the characteristics of biodegradable intramuscular in-situ gel loaded with alendronate sodium for osteoporosis. PLoS One. 13(6):e0197540.
  • Hosny KM, Rizg WY, Khallaf RA. 2020. Preparation and optimization of in situ gel loaded with rosuvastatin-ellagic acid nanotransfersomes to enhance the anti-proliferative activity. Pharmaceutics. 12(3):263.
  • Hua Y, Wang Z, Wang D, Lin X, Liu B, Zhang H, Gao J, Zheng A. 2021. Key factor study for generic long-acting PLGA microspheres based on a reverse engineering of Vivitrol®. Molecules. 26(5):1247.
  • Huh KM, Cho YW, Park K. 2003. PLGA-PEG block copolymers for drug formulations. Drug Deliv Technol. 3(5):44–49.
  • Ibrahim HM, Ahmed TA, Hussain MD, Rahman Z, Samy AM, Kaseem AA, Nutan MT. 2014. Development of meloxicam in situ implant formulation by quality by design principle. Drug Dev Ind Pharm. 40(1):66–73.
  • Ibrahim TM, Eissa RG, El-Megrab NA, El-Nahas HM. 2021. Morphological characterization of optimized risperidone-loaded in-situ gel forming implants with pharmacokinetic and behavioral assessments in rats. J Drug Deliv Sci Technol. 61:102195.
  • Ibrahim TM, El-Megrab NA, El-Nahas HM. 2020. Optimization of injectable PLGA in-situ forming implants of anti-psychotic risperidone via Box-Behnken Design. J Drug Deliv Sci Technol. 58:101803.
  • Inkinen S, Hakkarainen M, Albertsson AC, Södergård A. 2011. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules. 12(3):523–532.
  • Islam S. 2011. Lipophilic and hydrophilic drug loaded PLA/PLGA in situ implants: Studies on thermal behavior of drug & polymer and observation of parameters influencing drug burst release with corresponding effects on loading efficiency & morphology of implants. Int J Pharm Pharm Sci. 3(3):181–188.
  • Jain RA, Rhodes CT, Railkar AM, Malick AW, Shah NH. 2000. Controlled release of drugs from injectable in situ formed biodegradable PLGA microspheres: effect of various formulation variables. Eur J Pharm Biopharm. 50(2):257–262.
  • James HP, John R, Alex A, Anoop KR. 2014. Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharm Sin B. 4(2):120–127.
  • Jeong B, Bae YH, Kim SW. 2000. In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J Biomed Mater Res. 50(2):171–177.
  • Jerbić IŠ. 2018. Biodegradable synthetic polymers and their application in advanced drug delivery systems (DDS). Nano Tech Appl. 1(1):1–9.
  • Jervis LP. 2017. A summary of recent advances in ocular inserts and implants. J Bioequivalence Bioavailab. 9(1):320–323.
  • Jhaveri AM, Torchilin VP. 2014. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol. 5:77.
  • Jivawala R, Goyani M. 2017. A novel approach to deliver therapeutic agents using in situ forming implant based on solvent induced phase separation technique for long term controlled release. Int J Adv Res Rev. 2(12):50–62.
  • Joshi R, Robinson DH, Himmelstein KJ. 1999. In vitro properties of an in situ forming gel for the parenteral delivery of macromolecular drugs. Pharm Dev Technol. 4(4):515–522.
  • Kamali H, Khodaverdi E, Hadizadeh F, Mohajeri SA, Nazari A, Jafarian AH. 2019. Comparison of in-situ forming composite using PLGA-PEG-PLGA with in-situ forming implant using PLGA: in-vitro, ex-vivo, and in-vivo evaluation of naltrexone release. J Drug Deliv Sci Technol. 50:188–200.
  • Kamali H, Khodaverdi E, Kaffash E, Saffari AS, Shiadeh SN, Nokhodchi A, Hadizadeh F. 2020. Optimization and in vitro evaluation of injectable sustained-release of levothyroxine using PLGA-PEG-PLGA. J Pharm Innov. 1–11.
  • Kamaly N, Yameen B, Wu J, Farokhzad OC. 2016. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 116(4):2602–2663.
  • Kane JM, Kishimoto T, Correll CU. 2013. Non-adherence to medication in patients with psychotic disorders: epidemiology, contributing factors and management strategies. World Psychiatry. 12(3):216–226.
  • Kanwar N, Sinha VR. 2019. In situ forming depot as sustained-release drug delivery systems. Crit Rev Ther Drug Carrier Syst. 36(2):93–136.
  • Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. 2015. PLGA: a unique polymer for drug delivery. Ther Deliv. 6(1):41–58.
  • Kapoor DN, Katare OP, Dhawan S. 2012. In situ forming implant for controlled delivery of an anti-HIV fusion inhibitor. Int J Pharm. 426(1–2):132–143.
  • Karp F, Turino LN, Helbling IM, Islan GA, Luna JA, Estenoz DA. 2021. In situ formed implants, based on PLGA and Eudragit blends, for novel florfenicol controlled release formulations. J Pharm Sci. 110(3):1270–1278.
  • Kempe S, Mäder K. 2012. In situ forming implants – an attractive formulation principle for parenteral depot formulations. J Control Release. 161(2):668–679.
  • Khodaverdi E, Delroba K, Mohammadpour F, Khameneh B, Tabassi SAS, Tafaghodi M, Kamali H, Hadizadeh F. 2020. In-vitro release evaluation of growth hormone from an injectable in-situ forming gel using PCL-PEG-PCL thermosensitive triblock. Curr Drug Deliv. 17(2):174–183.
  • Kondiah P, Choonara Y, Kondiah P, Marimuthu T, Kumar P, Du Toit LC, Pillay V. 2016. A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules. 21(11):1580.
  • Kumar D, Jain N, Gulati N, Nagaich U. 2013. Nanoparticles laden in situ gelling system for ocular drug targeting. J Adv Pharm Technol Res. 4(1):9–17.
  • Lambert WJ, Peck KD. 1995. Development of an in situ forming biodegradable poly-lactide-coglycolide system for the controlled release of proteins. J Control Release. 33(1):189–195.
  • Lanao RPF, Jonker AM, Wolke JGC, Jansen JA, Hest JCM, Leeuwenburgh SCG. 2013. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration. Tissue Eng Part B Rev. 19(4):380–390.
  • Larsen C, Larsen SW, Jensen H, Yaghmur A, Østergaard J. 2009. Role of in vitro release models in formulation development and quality control of parenteral depots. Expert Opin Drug Deliv. 6(12):1283–1295.
  • Lee SJ, Shim Y, Oh J, Jeong Y, Park I, Lee HC. 2015. Folic-acid-conjugated pullulan/poly(dl-lactide-co-glycolide) graft copolymer nanoparticles for folate-receptor-mediated drug delivery. Nanoscale Res Lett. 10(1):43.
  • Liu Q, Zhang H, Zhou G, Xie S, Zou H, Yu Y, Li G, Sun D, Zhang G, Lu Y, et al. 2010. In vitro and in vivo study of thymosin alpha1 biodegradable in situ forming poly(lactide-coglycolide) implants. Int J Pharm. 397(1–2):122–129.
  • Lin X, Yang S, Gou J, Zhao M, Zhang Y, Qi N, He H, Cai C, Tang X, Guo P. 2012. A novel risperidone-loaded SAIB–P LGA mixture matrix depot with a reduced burst release: effects of solvents and P LGA on drug release behaviors in vitro/in vivo. J Mater Sci Mater Med. 23(2):443–455.
  • Liu H, Venkatraman SS. 2012a. Cosolvent effects on the drug release and depot swelling in injectable in situ depot-forming systems. J Pharm Sci. 101(5):1783–1793.
  • Liu H, Venkatraman SS. 2012b. Effect of polymer type on the dynamics of phase inversion and drug release in injectable in situ gelling systems. J Biomater Sci Polym Ed. 23(1-4):251–266.
  • Madan M, Bajaj A, Lewis S, Udupa N, Baig JA. 2009. In situ forming polymeric drug delivery systems. Indian J Pharm Sci. 71(3):242–251.
  • Madhav NV, Shakya AK, Shakya P, Singh K. 2009. Orotransmucosal drug delivery systems: a review. J Control Release. 140(1):2–11.
  • Maeda T, Kitagawa M, Hotta A, Koizumi S. 2019. Thermo-responsive nanocomposite hydrogels based on PEG-b-PLGA diblock copolymer and laponite. Polymers. 11(2):250.
  • Makadia HK, Siegel SJ. 2011. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 3(3):1377–1397.
  • Mallardé D, Boutignon F, Moine F, Barré E, David S, Touchet H, Ferruti P, Deghenghi R. 2003. PLGA-PEG microspheres of teverelix: influence of polymer type on microsphere characteristics and on Teverelix in vitro release. Int J Pharm. 261(1–2):69–80.
  • Martins C, Sousa F, Araújo F, Sarmento B. 2018. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthc Mater. 7(1):1–24.
  • McCullough A. 2014. A review of testosterone pellets in the treatment of hypogonadism. Curr Sex Health Rep. 6(4):265–269.
  • Metzger KL, Shoemaker JM, Kahn JB, Maxwell CR, Liang Y, Tokarczyk J, Kanes SJ, Hans M, Lowman AM, Dan N, et al. 2007. Pharmacokinetic and behavioral characterization of a long-term antipsychotic delivery system in rodents and rabbits. Psychopharmacology . 190(2):201–211.
  • Milacic V, Schwendeman SP. 2014. Lysozyme release and polymer erosion behavior of injectable implants prepared from PLGA-PEG block copolymers and PLGA/PLGA-PEG blends. Pharm Res. 31(2):436–448.
  • Mittal G, Sahana DK, Bhardwaj V, Kumar MNVR. 2007. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release. 119(1):77–85.
  • Musmade N, Jadhav A, Moin P, Patil S, Gupta A. 2019. An overview of in situ gel forming implants: Current approach towards alternative drug delivery system. JBCC. 5(1):14–21.
  • Neubert A, Sternberg K, Nagel S, Harder C, Schmitz KP, Kroemer HK, Weitschies W. 2008. Development of a vessel-simulating flow-through cell method for the in vitro evaluation of release and distribution from drug-eluting stents. J Control Release. 130(1):2–8.
  • Nikam KR, Pawar MG, Jadhav SP, Bairagi VB. 2013. Novel trends in parenteral drug delivery system: Review. Int J Pharm Technol. 5(2):2549–2577.
  • Niu X, Wang L, Chen P, Li X, Zhou G, Feng Q, Fan Y. 2013. Emulsion self-assembly synthesis of chitosan/poly(lactic-co-glycolic acid) stimuli-responsive amphiphiles. Macromol Chem Phys. 214(6):700–706.
  • Nkanga CI, Fisch A, Rad-Malekshahi M, Romic MD, Kittel B, Ullrich T, Wang J, Krause RWM, Adler S, Lammers T, et al. 2020. Clinically established biodegradable long acting injectables: an industry perspective. Adv Drug Deliv Rev. 167:19–46.
  • Okur NU, Yozgatli V, Senyigit Z. 2020. Formulation and detailed characterization of voriconazole loaded in situ gels for ocular application. J Fac Pharm Ankara. 44(1):33–49.
  • Olivier J. 2005. Drug transport to brain with targeted nanoparticles. NeuroRx. 2(1):108–119.
  • Osorno LL, Maldonado DE, Whitener RJ, Brandley AN, Yiantsos A, Medina JD, Byrne ME. 2020. Amphiphilic PLGA-PEG-PLGA triblock copolymer nanogels varying in gelation temperature and modulus for the extended and controlled release of hyaluronic acid. J Appl Polym Sci. 137(25):48678.
  • Parent M, Nouvel C, Koerber M, Sapin A, Maincent P, Boudier A. 2013. PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release. J Control Release. 172(1):292–304.
  • Patel A, Ansari T, Vimal P, Goyani M, Deshmukh A, Akbari B. 2015. A review on PLGA based solvent induced in-situ forming implant. Inventi Rapid. 2015(4):1–14.
  • Patel RB, Solorio L, Wu H, Krupka T, Exner AA. 2010. Effect of injection site on in situ implant formation and drug release in vivo. J Control Release. 147(3):350–358.
  • Patki M, Palekar S, Reznik S, Patel K. 2021. Self-injectable extended release formulation of remdesivir (SelfExRem): a potential formulation alternative for COVID-19 treatment. Int J Pharm. 597:120329.
  • Patlolla VGR, Holbrook WP, Gizurarson S, Kristmundsdottir T. 2019. Doxycycline and monocaprin in situ hydrogel: Effect on stability, mucoadhesion and texture analysis and in vitro release. Gels. 5(4):47.
  • Phaechamud T, Mahadlek J, Charoenteeraboon J, Choopun S. 2012. Characterization and antimicrobial activity of N-methyl-2-pyrrolidone-loaded ethylene oxide-propylene oxide block copolymer thermosensitive gel. Indian J Pharm Sci. 74(6):498–504.
  • Pineda-Hernández MT, Pérez-Urizar JT, Ganem-Rondero A. 2020. Thermo-reversible in situ forming implant with nanostructured lipid carriers (NLC) as a delivery system for the administration of estradiol valerate. Drug Deliv Transl Res. 10(5):1393–1402.
  • Pitorre M, Gondé H, Haury C, Messous M, Poilane J, Boudaud D, Kanber E, Ndombina GAR, Benoit J, Bastiat G. 2017. Recent advances in nanocarrier-loaded gels: which drug delivery technologies against which diseases? J Control Release. 266:140–155.
  • Prabhu S, Tran LP, Betageri GV. 2005. Effect of co-solvents on the controlled release of calcitonin polypeptide from in situ biodegradable polymer implants. Drug Deliv. 12(6):393–398.
  • Qi F, Wu J, Li H, Ma G. 2019. Recent research and development of PLGA/PLA microspheres/nanoparticles: a review in scientific and industrial aspects. Front Chem Sci Eng. 13(1):14–27.
  • Reddy P, Acharya SR, Acharya NS. 2015. Optimization of size controlled poly (lactide-co-glycolic acid) nanoparticles using quality by design concept. Asian J Pharm. 9(3):152–161.
  • Rousselle SD, Ramot Y, Nyska A, Jackson ND. 2019. Pathology of bioabsorbable implants in preclinical studies. Toxicol Pathol. 47(3):358–378.
  • Sabale V, Vora S. 2012. Formulation and evaluation of microemulsion-based hydrogel for topical delivery. Int J Pharm Investig. 2(3):140–149.
  • Santamaria CM, Woodruff A, Yang R, Kohane DS. 2017. Drug delivery systems for prolonged duration local anesthesia. Mater Today . 20(1):22–31.
  • Schwendeman SP, Shah RB, Bailey BA, Schwendeman AS. 2014. Injectable controlled release depots for large molecules. J Control Release. 190:240–253.
  • Selmin F, Musazzi UM, Magri G, Rocco P, Cilurzo F, Minghetti P. 2020. Regulatory aspects and quality controls of polymer-based parenteral long-acting drug products: the challenge of approving copies. Drug Discov Today. 25(2):321–329.
  • Shen J, Burgess DJ. 2012. Accelerated in-vitro release testing methods for extended-release parenteral dosage forms. J Pharm Pharmacol. 64(7):986–996.
  • Shen J, Burgess DJ. 2013. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: recent developments and challenges. Drug Deliv Transl Res. 3(5):409–415.
  • Sheshala R, Hong GC, Yee WP, Meka VS, Thakur RRS. 2019. In situ forming phase-inversion implants for sustained ocular delivery of triamcinolone acetonide. Drug Deliv Transl Res. 9(2):534–542.
  • Sinha VR, Khosla L. 1998. Bioabsorbable polymers for implantable therapeutic systems. Drug Dev Ind Pharm. 24(12):1129–1138.
  • Solorio L, Olear AM, Hamilton JI, Patel RB, Beiswenger AC, Wallace JE, Zhou H, Exner AA. 2012. Noninvasive characterization of the effect of varying PLGA molecular weight blends on in situ forming implant behavior using ultrasound imaging. Theranostics. 2(11):1064–1077.
  • Stewart SA, Domínguez-Robles J, Donnelly RF, Larrañeta E. 2018. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers. 10(12):1379.
  • Tang H, Zhao W, Yu J, Li Y, Zhao C. 2018. Recent development of pH-responsive polymers for cancer nanomedicine. Molecules. 24(1):4.
  • Tang Y, Singh J. 2008. Controlled delivery of aspirin: effect of aspirin on polymer degradation and in vitro release from PLGA based phase sensitive systems. Int J Pharm. 357(1–2):119–125.
  • Thakur RR, McMillan HL, Jones DS. 2014. Solvent induced phase inversion-based in situ forming controlled release drug delivery implants. J Control Release. 176:8–23.
  • Toh MR, Chiu GNC. 2013. Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian J Pharm Sci. 8(2):88–95.
  • Tsujimoto H, Hara K, Tsukada Y, Huang C, Kawashima Y, Arakaki M, Okayasu H, Mimura H, Miwa N. 2007. Evaluation of the permeability of hair growing ingredient encapsulated PLGA nanospheres to hair follicles and their hair growing effects. Bioorg Med Chem Lett. 17(17):4771–4777.
  • Uddin R, Saffoon N, Sutradhar KB. 2011. Dissolution and dissolution apparatus: a review. Int J Curr Biomed Pharm Res. 1(4):201–207.
  • U.S. Pharmacopoeia. 2020. Pharmaceutical dosage forms <1151>. In: U.S. pharmacopoeia. 43th ed.
  • Verma P, Prajapati SK, Yadav R, Senyschyn D, Shea PR, Trevaskis NL. 2016. Single intravenous dose of novel flurbiprofen-loaded proniosome formulations provides prolonged systemic exposure and anti-inflammatory effect. Mol Pharm. 13(11):3688–3699.
  • Versypt ANF, Pack DW, Braatz RD. 2013. Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres – a review. J Control Release. 165(1):29–37.
  • Vhora I, Khatri N, Misra A. 2021. Applications of polymers in parenteral drug delivery. In: Misra A, Shahiwala A, editors. Applications of polymers in drug delivery. 2nd ed. Netherlands: Elsevier Inc; p. 221–261.
  • Vineetha K, Koland M. 2017. Investigation of a biodegradable injectable in situ gelling implantable system of rivastigmine tartrate. Asian J Pharm. 11(4):S731–S738.
  • Walewijk A, Cooper-White J, Dunstan D. 2008. Adhesion measurements between alginate gel surfaces via texture analysis. Food Hydrocoll. 22(1):91–96.
  • Wang B, Friess W. 2018. Lipid-coated mannitol core microparticles for sustained release of protein. Eur J Pharm Biopharm. 128:91–97.
  • Wang B, Wang J, Shao J, Kouwer PHJ, Bronkhorst EM, Jansen JA, Walboomers XF, Yang F. 2020. A tunable and injectable local drug delivery system for personalized periodontal application. J Control Release. 324:134–145.
  • Wang L, Kleiner L, Venkatraman S. 2003. Structure formation in injectable poly(lactide-co-glycolide) depots. J Control Release. 90(3):345–354.
  • Wang L, Lin X, Hong Y, Shen L, Feng Y. 2017. Hydrophobic mixed solvent induced PLGA-based in situ forming systems for smooth long-lasting delivery of radix ophiopogonis polysaccharide in rats. RSC Adv. 7(9):5349–5361.
  • Wang L, Wang A, Zhao X, Liu X, Wang D, Sun F, Li Y. 2012. Design of a long-term antipsychotic in situ forming implant and its release control method and mechanism. Int J Pharm. 427(2):284–292.
  • Wang M, Feng Q, Niu X, Tan R, She Z. 2010. A spheres-in-sphere structure for improving protein-loading poly (lactide-co-glycolide) microspheres. Polym Degrad Stab. 95(1):6–13.
  • Wang Q, Sun C, Xu B, Tu J, Shen Y. 2018. Synthesis, physicochemical properties and ocular pharmacokinetics of thermosensitive in situ hydrogels for ganciclovir in cytomegalovirus retinitis treatment. Drug Deliv. 25(1):59–69.
  • Wen H, Jung H, Li X. 2015. Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J. 17(6):1327–1340.
  • Woodard LN, Grunlan MA. 2018. Hydrolytic degradation and erosion of polyester biomaterials. ACS Macro Lett. 7(8):976–982.
  • Wu W, Chen H, Shan F, Zhou J, Sun X, Zhang L, Gong T. 2014. A novel doxorubicin-loaded in situ forming gel based high concentration of phospholipid for intratumoral drug delivery. Mol Pharm. 11(10):3378–3385.
  • Yadav AK, Agarwal A, Rai G, Mishra P, Jain S, Mishra AK, Agrawal H, Agrawal GP. 2010. Development and characterization of hyaluronic acid decorated PLGA nanoparticles for delivery of 5-fluorouracil. Drug Deliv. 17(8):561–572.
  • Yadav R, Kanwar IL, Haider T, Pandey V, Gour V, Soni V. 2020. In situ gel drug delivery system for periodontitis: an insight review. Future J Pharm Sci. 6(1):1–13.
  • Yaghmur A, Rappolt M, Larsen S. 2013. In situ forming drug delivery systems based on lyotropic liquid crystalline phases: structural characterization and release properties. J Drug Deliv Sci Technol. 23(4):325–332.
  • Yan B, Boyer J, Habault D, Branda NR, Zhao Y. 2012. Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J Am Chem Soc. 134(40):16558–16561.
  • Yang S, Hu M, Liu W, Hou N, Yin K, Shen C, Shang Q. 2021. Fabrication of PLGA in situ forming implants and study on their correlation of in vitro release profiles with in vivo performances. J Biomater Sci Polym Ed. 9:1–15.
  • Yarnsuphawong P, Thipkunok W, Silaon W, Sritananuwat P, Puapermpoonsiri U. 2015. The study of factors and components in situ forming gel formulation comprising of PLGA. Isan J Pharm Sci. 11(5):135–143.
  • Zhang K, Shi X, Lin X, Yao C, Shen L, Feng Y. 2014. Poloxamer-based in situ hydrogels for controlled delivery of hydrophilic macromolecules after intramuscular injection in rats. Drug Deliv. 22(3):375–382.
  • Zhang K, Tang X, Zhang J, Lu W, Lin X, Zhang Y, Tian B, Yang H, He H. 2014. PEG-PLGA copolymers: their structure and structure-influenced drug delivery applications. J Control Release. 183:77–86.
  • Zhang Q, Fassihi R. 2020. Release rate determination from in situ gel forming PLGA implant: a novel ‘shape-controlled basket in tube’ method. J Pharm Pharmacol. 72(8):1038–1048.
  • Zhang Y, García-Gabilondo M, Rosell A, Roig A. 2019. MRI/Photoluminescence dual-modal imaging magnetic PLGA nanocapsules for thernaostics. Pharmaceutics. 12(1):16.
  • Zheng H, Tai C, Su J, Zou X, Gao F. 2015. Ultra-small mesoporous silica nanoparticles as efficient carriers for pH responsive releases of anti-cancer drugs. Dalton Trans. 44(46):20186–20192.
  • Zhou J, Hirota K, Ackermann R, Walker J, Wang Y, Choi S, Schwendeman A, Schwendeman SP. 2018. Reverse engineering the 1-month lupron depot®. AAPS J. 20(6):105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.