961
Views
0
CrossRef citations to date
0
Altmetric
Review Article

An overview on the advantages and limitations of 3D printing of microneedles

ORCID Icon, ORCID Icon & ORCID Icon
Pages 923-933 | Received 15 Mar 2021, Accepted 03 Aug 2021, Published online: 17 Aug 2021

References

  • 3DPrinting. 2021. https://3dprinting.com/what-is-3d-printing/; [accessed 2021 May 3].
  • Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B. 2016. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 33(8):1817–1832.
  • Ali R, Mehta P, Arshad MS, Kucuk I, Chang MW, Ahmad Z. 2019. Transdermal microneedles—a materials perspective. AAPS PharmSciTech. 21(1):12–14.
  • Ali Z, Türeyen EB, Karpat Y, Çakmakcı M. 2016. Fabrication of polymer micro needles for transdermal drug delivery system using DLP based projection stereo-lithography. Proc Cirp. 42:87–90.
  • Au AK, Lee W, Folch A. 2014. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip. 14(7):1294–1301.
  • Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. 2018. Reshaping drug development using 3D printing. Drug Discov Today. 23(8):1547–1555.
  • Bird D, Eker E, Ravindra NM. 2019. 3D printing of pharmaceuticals and transdermal drug delivery––an overview. TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. Cham: Springer. p. 1563–1573.
  • Bittner B, Richter W, Schmidt J. 2018. Subcutaneous administration of biotherapeutics: an overview of current challenges and opportunities. BioDrugs. 32(5):425–440.
  • Boniface K, Taieb A, Seneschal A. 2018. Cell delivery using microneedle devices: a new approach to treat depigmenting disorders. Br J Dermatol. 178:583–594.
  • Brown MB, Martin GP, Jones SA, Akomeah FK. 2006. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv. 13(3):175–187.
  • Caudill CL, Perry JL, Tian S, Luft JC, DeSimone JM. 2018. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J Control Release. 284:122–132.
  • Cheng H, Liu M, Du X, Xu J, Zhai Y, Ji J, He S, Zhai G. 2019. Recent progress of micro-needle formulations: fabrication strategies and delivery applications. J Drug Deliv Sci Technol. 50:18–26.
  • Cheung K, Das DB. 2016. Microneedles for drug delivery: trends and progress. Drug Deliv. 23(7):2338–2354.
  • Cho N, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B. 2018. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 138:271–281.
  • Derakhshandeh H, Aghabaglou F, McCarthy A, Mostafavi A, Wiseman C, Bonick Z, Ghanavati I, Harris S, Kreikemeier‐Bower C, Moosavi Basri SM, et al. 2020. A wirelessly controlled smart bandage with 3D‐printed miniaturized needle arrays. Adv Funct Mater. 30(13):1905544.
  • Economidou SN, Lamprou DA, Douroumis D. 2018. 3D printing applications for transdermal drug delivery. Int J Pharm. 544(2):415–424.
  • Economidou SN, Pere CPP, Reid A, Uddin MJ, Windmill JF, Lamprou DA, Douroumis D. 2019. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Mater Sci Eng C Mater Biol Appl. 102:743–755.
  • Economidou SN, Pissinato Pere CP, Okereke M, Douroumis D. 2021. Optimisation of design and manufacturing parameters of 3D printed solid microneedles for improved strength, sharpness, and drug delivery. Micromachines. 12(2):117.
  • El-Sayed N, Vaut L, Schneider M. 2020. Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery. Eur J Pharm Biopharm. 154:166–174.
  • Geng Q, Wang D, Chen P, Chen SC. 2019. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat Commun. 10(1):2179.
  • George E, Liacouras P, Rybicki FJ, Mitsouras D. 2017. Measuring and establishing the accuracy and reproducibility of 3D printed medical models. Radiographics. 37(5):1424–1450.
  • Gittard SD, Miller PR, Jin C, Martin TN, Boehm RD, Chisholm BJ, Stafslien SJ, Daniels JW, Cilz N, Monteiro-Riviere NA, et al. 2011. Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles. JOM. 63(6):59–68.
  • Gopinathan J, Noh I. 2018. Recent trends in bioinks for 3D printing. Biomater Res. 22(1):11–15.
  • Gualeni B, Coulman SA, Shah D, Eng PF, Ashraf H, Vescovo P, Blayney GJ, Piveteau LD, Guy OJ, Birchall JC. 2018. Minimally invasive and targeted therapeutic cell delivery to the skin using microneedle devices. Br J Dermatol. 178(3):731–739.
  • Hao Y, Li W, Zhou XL, Yang F, Qian Z. 2017. Microneedles-based transdermal drug delivery systems: a review. J Biomed Nanotechnol. 13(12):1581–1597.
  • Jamróz W, Szafraniec J, Kurek M, Jachowicz R. 2018. 3D printing in pharmaceutical and medical applications – recent achievements and challenges. Pharm Res. 35(9):176.
  • Janusziewicz R, Tumbleston JR, Quintanilla AL, Mecham SJ, DeSimone JM. 2016. Layerless fabrication with continuous liquid interface production. Proc Natl Acad Sci U S A. 113(42):11703–11708.
  • Johnson AR, Caudill CL, Tumbleston JR, Bloomquist CJ, Moga KA, Ermoshkin A, Shirvanyants D, Mecham SJ, Luft JC, DeSimone JM. 2016. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLOS One. 11(9):e0162518.
  • Kavaldzhiev M, Perez JE, Ivanov Y, Bertoncini A, Liberale C, Kosel J. 2017. Biocompatible 3D printed magnetic micro needles. Biomed Phys Eng Express. 3(2):25005.
  • Kim YC, Park JH, Prausnitz MR. 2012. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 64(14):1547–1568.
  • Krieger N, Bertollo M, Dangol JT, Sheridan MM, Lowery EDO, O’Cearbhaill E. 2019. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst Nanoeng. 5(1).
  • Kjar A, Huang Y. 2019. Application of micro-scale 3D printing in pharmaceutics. Pharmaceutics. 11(8):390.
  • Knowlton S, Yu CH, Ersoy F, Emadi S, Khademhosseini A, Tasoglu S. 2016. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs. Biofabrication. 8(2):25019.
  • Kochhar JS, Quek TC, Soon WJ, Choi J, Zou S, Kang L. 2013. Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin. J Pharm Sci. 102(11):4100–4108.
  • Kundu A, Arnett P, Bagde A, Azim N, Kouagou E, Singh M, Rajaraman S. 2020. DLP 3D printed “intelligent” microneedle array (iμNA) for stimuli responsive release of drugs and its in vitro and ex vivo characterization. J Microelectromech Syst. 29(5):685–691.
  • Lee H, Song C, Baik S, Kim D, Hyeon T, Kim DH. 2018. Device-assisted transdermal drug delivery. Adv Drug Deliv Rev. 127:35–45.
  • Lim SH, Ng JY, Kang L. 2017. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger. Biofabrication. 9(1):15010.
  • Lu Y, Mantha SN, Crowder DC, Chinchilla S, Shah KN, Yun YH, Wicker RB, Choi J-W. 2015. Microstereolithography and characterization of poly(propylene fumarate)-based drug-loaded microneedle arrays. Biofabrication. 7(4):45001.
  • Luzuriaga MA, Berry DR, Reagan JC, Smaldone RA, Gassensmith JJ. 2018. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip. 18(8):1223–1230.
  • Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. 2015. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 16(5):1489–1496.
  • Miller MA, Pisani E. 1999. The cost of unsafe injections. Bull World Health Organ. 77(10):808–811.
  • Ovsianikov A, Chichkov B, Mente P, Monteiro‐Riviere NA, Doraiswamy A, Narayan RJ. 2007. Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceram Technol. 4(1):22–29.
  • Park BJ, Choi HJ, Moon SJ, Kim SJ, Bajracharya R, Min JY, Han HK. 2019. Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. J Pharm Invest. 49(6):575–585.
  • Pere CPP, Economidou SN, Lall G, Ziraud C, Boateng JS, Alexander BD, Lamprou DA, Douroumis D. 2018. 3D printed microneedles for insulin skin delivery. Int J Pharm. 544(2):425–432.
  • Plamadeala C, Gosain SR, Hischen F, Buchroithner B, Puthukodan S, Jacak J, Heitz J. 2020. Bio-inspired microneedle design for efficient drug/vaccine coating. Biomed Microdev. 22(1):1–9.
  • Prausnitz MR, Langer R. 2008. Transdermal drug delivery. Nat Biotechnol. 26(11):1261–1268.
  • Prausnitz MR. 2004. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 56(5):581–587.
  • Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. 2020. Photo-curing 3D printing technique and its challenges. Bioact Mater. 5(1):110–115.
  • Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E, Nuutila K, Giatsidis G, Mostafalu P, Derakhshandeh H, et al. 2018. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev. 127:138–166.
  • Sahlabadi M, Hutapea P. 2018. Novel design of honeybee-inspired needles for percutaneous procedure. Bioinspir Biomim. 13(3):36013.
  • Samper IC, Gowers SA, Rogers ML, Murray DSR, Jewell SL, Pahl C, Boutelle MG. 2019. 3D printed microfluidic device for online detection of neurochemical changes with high temporal resolution in human brain microdialysate. Lab on a Chip. 19(11):2038–2048.
  • Suzuki M, Takahashi T, Aoyagi S. 2018. 3D laser lithographic fabrication of hollow microneedle mimicking mosquitos and its characterisation. Int J Nanotechnol. 15(1/2/3):157–173.
  • Trautmann A, Roth GL, Nujiqi B, Walther T, Hellmann R. 2019. Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays. Microsyst Nanoeng. 5(1):1–9.
  • Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 2018. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 39(5):440–451.
  • Uddin MJ, Scoutaris N, Economidou SN, Giraud C, Chowdhry BZ, Donnelly RF, Douroumis D. 2020. 3D printed microneedles for anticancer therapy of skin tumours. Mater Sci Eng C Mater Biol Appl. 107:110248.
  • Uddin MJ, Scoutaris N, Klepetsanis P, Chowdhry B, Prausnitz MR, Douroumis D. 2015. Inkjet printing of transdermal microneedles for the delivery of anticancer agents. Int J Pharm. 494(2):593–602.
  • Vithani K, Goyanes A, Jannin V, Basit AW, Gaisford S, Boyd BJ. 2018. An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharm Res. 36(1):4–20.
  • Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, Dua K. 2019. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 109:1249–1258.
  • Walker DA, Hedrick JL, Mirkin CA. 2019. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science. 366(6463):360–364.
  • Wu C, Luo Y, Cuniberti G, Xiao Y, Gelinsky M. 2011. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater. 7(6):2644–2650.
  • Wu M, Zhang Y, Huang H, Li J, Liu H, Guo Z, Xue L, Liu S, Lei Y. 2020. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater Sci Eng C Mater Biol Appl. 117:111299.
  • Xenikakis I, Tzimtzimis M, Tsongas K, Andreadis D, Demiri E, Tzetzis D, Fatouros DG. 2019. Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro. Eur J Pharm Sci. 137:104976.
  • Yang J, Liu X, Fu Y, Song Y. 2019. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm Sin B. 9(3):469–483.
  • Yang Q, Zhong W, Xu L, Li H, Yan Q, She Y, Yang G. 2021. Recent progress of 3D-printed microneedles for transdermal drug delivery. Int J Pharm. 593:120106.
  • Yao W, Li D, Zhao Y, Zhan Z, Jin G, Liang H, Yang R. 2020. 3D printed multi-functional hydrogel microneedles based on high-precision digital light processing. Micromachines. 11(1):17.
  • Yao G, Quan G, Lin S, Peng T, Wang Q, Ran H, Chen H, Zhang Q, Wang L, Pan X, et al. 2017. Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: in vitro and in vivo characterization. Int J Pharm. 534(1–2):378–386.
  • Yeung C, Chen S, King B, Lin H, King K, Akhtar F, Diaz G, Wang B, Zhu J, Sun W, et al. 2019. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics. 13(6):64125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.